首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Numerical simulations of the four-field extended magnetohydrodynamics (MHD) equations with hyper-resistivity terms present a difficult challenge because of demanding spatial resolution requirements. A time-dependent sequence of r-refinement adaptive grids obtained from solving a single Monge–Ampère (MA) equation addresses the high-resolution requirements near the x-point for numerical simulation of the magnetic reconnection problem. The MHD equations are transformed from Cartesian coordinates to solution-defined curvilinear coordinates. After the application of an implicit scheme to the time-dependent problem, the parallel Newton–Krylov–Schwarz (NKS) algorithm is used to solve the system at each time step. Convergence and accuracy studies show that the curvilinear solution requires less computational effort than a pure Cartesian treatment. This is due both to the more optimal placement of the grid points and to the improved convergence of the implicit solver, nonlinearly and linearly. The latter effect, which is significant (more than an order of magnitude in number of inner linear iterations for equivalent accuracy), does not yet seem to be widely appreciated.  相似文献   

2.
Using variational and numerical solutions we show that stationary negative-energy localized (normalizable) bound states can appear in the three-dimensional nonlinear Schr?dinger equation with a finite square-well potential for a range of nonlinearity parameters. Below a critical attractive nonlinearity, the system becomes unstable and experiences collapse. Above a limiting repulsive nonlinearity, the system becomes highly repulsive and cannot be bound. The system also allows nonnormalizable states of infinite norm at positive energies in the continuum. The normalizable negative-energy bound states could be created in BECs and studied in the laboratory with present knowhow.  相似文献   

3.
We propose here a first-principles, parameter free, real space method for the study of disordered extended defects in solids. We shall illustrate the power of the technique with an application to graphene sheets with randomly placed Stone–Wales defects and shall examine the signature of such random defects on the density of states as a function of their concentration. The technique is general enough to be applied to a whole class of systems with lattice translational symmetry broken not only locally but by extended defects and defect clusters. The real space approach will allow us to distinguish signatures of specific defects and defect clusters.  相似文献   

4.
We present the lowest order rogue wave solution of the Sasa–Satsuma equation (SSE) which is one of the integrable extensions of the nonlinear Schrödinger equation (NLSE). In contrast to the Peregrine solution of the NLSE, it is significantly more involved and contains polynomials of fourth order rather than second order in the corresponding expressions. The correct limiting case of the Peregrine solution appears when the extension parameter of the SSE is reduced to zero.  相似文献   

5.
This study shows how applying compressed sensing (CS) to (19)F chemical shift imaging (CSI) makes highly accurate and reproducible reconstructions from undersampled datasets possible. The missing background signal in (19)F CSI provides the required sparsity needed for application of CS. Simulations were performed to test the influence of different CS-related parameters on reconstruction quality. To test the proposed method on a realistic signal distribution, the simulation results were validated by ex vivo experiments. Additionally, undersampled in vivo 3D CSI mouse datasets were successfully reconstructed using CS. The study results suggest that CS can be used to accurately and reproducibly reconstruct undersampled (19)F spectroscopic datasets. Thus, the scanning time of in vivo(19)F CSI experiments can be significantly reduced while preserving the ability to distinguish between different (19)F markers. The gain in scan time provides high flexibility in adjusting measurement parameters. These features make this technique a useful tool for multiple biological and medical applications.  相似文献   

6.
We present the development of a sliding mesh capability for an unsteady high order (order ? 3) h/p Discontinuous Galerkin solver for the three-dimensional incompressible Navier–Stokes equations. A high order sliding mesh method is developed and implemented for flow simulation with relative rotational motion of an inner mesh with respect to an outer static mesh, through the use of curved boundary elements and mixed triangular–quadrilateral meshes.A second order stiffly stable method is used to discretise in time the Arbitrary Lagrangian–Eulerian form of the incompressible Navier–Stokes equations. Spatial discretisation is provided by the Symmetric Interior Penalty Galerkin formulation with modal basis functions in the xy plane, allowing hanging nodes and sliding meshes without the requirement to use mortar type techniques. Spatial discretisation in the z-direction is provided by a purely spectral method that uses Fourier series and allows computation of spanwise periodic three-dimensional flows. The developed solver is shown to provide high order solutions, second order in time convergence rates and spectral convergence when solving the incompressible Navier–Stokes equations on meshes where fixed and rotating elements coexist.In addition, an exact implementation of the no-slip boundary condition is included for curved edges; circular arcs and NACA 4-digit airfoils, where analytic expressions for the geometry are used to compute the required metrics.The solver capabilities are tested for a number of two dimensional problems governed by the incompressible Navier–Stokes equations on static and rotating meshes: the Taylor vortex problem, a static and rotating symmetric NACA0015 airfoil and flows through three bladed cross-flow turbines. In addition, three dimensional flow solutions are demonstrated for a three bladed cross-flow turbine and a circular cylinder shadowed by a pitching NACA0012 airfoil.  相似文献   

7.
We present a Fourier continuation (FC) algorithm for the solution of the fully nonlinear compressible Navier–Stokes equations in general spatial domains. The new scheme is based on the recently introduced accelerated FC method, which enables use of highly accurate Fourier expansions as the main building block of general-domain PDE solvers. Previous FC-based PDE solvers are restricted to linear scalar equations with constant coefficients. The FC methodology presented in this text thus constitutes a significant generalization of the previous FC schemes, as it yields general-domain FC solvers for nonlinear systems of PDEs. While not restricted to periodic boundary conditions and therefore applicable to general boundary value problems on arbitrary domains, the proposed algorithm inherits many of the highly desirable properties arising from rapidly convergent Fourier expansions, including high-order convergence, essentially spectrally accurate dispersion relations, and much milder CFL constraints than those imposed by polynomial-based spectral methods—since, for example, the spectral radius of the FC first derivative grows linearly with the number of spatial discretization points. We demonstrate the accuracy and optimal parallel efficiency of the algorithm in a variety of scientific and engineering contexts relevant to fluid-dynamics and nonlinear acoustics.  相似文献   

8.
The distribution of the Fisher zeros in the Kallen–Lehmann approach to three-dimensional Ising model is studied. It is argued that the presence of a non-trivial angle (a cusp) in the distribution of zeros in the complex temperatures plane near the physical singularity is realized through a strong breaking of the 2D Ising self-duality. Remarkably, the realization of the cusp in the Fisher distribution ultimately leads to an improvement of the results of the Kallen–Lehmann ansatz. In fact, excellent agreement with Monte Carlo predictions both at high and at low temperatures is observed. Besides, agreement between both approaches is found for the predictions of the critical exponent α   and of the universal amplitude ratio Δ=A+/AΔ=A+/A, within the 3.5% and 7% of the Monte Carlo predictions, respectively.  相似文献   

9.
We present an efficient numerical framework for analyzing spinodal decomposition described by the Cahn–Hilliard equation. We focus on the analysis of various implicit time schemes for two and three dimensional problems. We demonstrate that significant computational gains can be obtained by applying embedded, higher order Runge–Kutta methods in a time adaptive setting. This allows accessing time-scales that vary by five orders of magnitude. In addition, we also formulate a set of test problems that isolate each of the sub-processes involved in spinodal decomposition: interface creation and bulky phase coarsening. We analyze the error fluctuations using these test problems on the split form of the Cahn–Hilliard equation solved using the finite element method with basis functions of different orders. Any scheme that ensures at least four elements per interface satisfactorily captures both sub-processes. Our findings show that linear basis functions have superior error-to-cost properties.  相似文献   

10.
Numerical convergence properties of a recently developed Jacobian-free Newton–Krylov (JFNK) solver are compared to the ones of the widely used EVP model when solving the sea ice momentum equation with a Viscous-Plastic (VP) formulation. To do so, very accurate reference solutions are produced with an independent Picard solver with an advective time step of 10 s and a tight nonlinear convergence criterion on 10, 20, 40, and 80-km grids. Approximate solutions with the JFNK and EVP solvers are obtained for advective time steps of 10, 20 and 30 min. Because of an artificial elastic term, the EVP model permits an explicit time-stepping scheme with a relatively large subcycling time step. The elastic waves excited during the subcycling are intended to damp out and almost entirely disappear such that the approximate solution should be close to the VP solution. Results show that residual elastic waves cause the EVP approximate solution to have notable differences with the reference solution and that these differences get more important as the grid is refined. Compared to the reference solution, additional shear lines and zones of strong convergence/divergence are seen in the EVP approximate solution. The approximate solution obtained with the JFNK solver is very close to the reference solution for all spatial resolutions tested.  相似文献   

11.
Blast wave generated by a high detonating spherical charge and propagating in confined domains is modeled using the Euler equations. The problem is split into two parts. The first calculation part relies on spherical isotropy to solve the problem in the radial component. Overpressure distribution is presented and shows a very good agreement with experimental and numerical data. The one-dimensional data need to be made three-dimensional mesh-compatible thanks to an appropriate remapping technique. To this end, a remapping technique is presented and its effectiveness, accuracy and efficiency are demonstrated. The second calculation part consists of a three-dimensional computation fed with the remapped data. The effectiveness of this mixed approach is demonstrated through three-dimensional applications in confined domains.  相似文献   

12.
《Physics letters. A》2014,378(5-6):577-583
We explore the form of rogue wave solutions in a select set of case examples of nonlinear Schrödinger equations with variable coefficients. We focus on systems with constant dispersion, and present three different models that describe atomic Bose–Einstein condensates in different experimentally relevant settings. For these models, we identify exact rogue wave solutions. Our analytical findings are corroborated by direct numerical integration of the original equations, performed by two different schemes. Very good agreement between numerical results and analytical predictions for the emergence of the rogue waves is identified. Additionally, the nontrivial fate of small numerically induced perturbations to the exact rogue wave solutions is also discussed.  相似文献   

13.
We report on the linear and nonlinear optical studies of TiO2–CeO2 nanocomposites. It was found that the band gap of the nanocomposite can be tuned by varying Ce/Ti content. Nonlinear absorption characteristics of these samples were studied by employing open aperture Z-scan technique using an Nd:YAG laser (532 nm, 7 ns, 10 Hz). It has been observed that as the CeO2 amount increases, band gap of the nanocomposites decreases and the reason proposed for the change in band gap is the smudging of localised states of Ce3+ into the forbidden energy gap, thus acting as the intermediate state. Fluorescence studies confirmed the above argument. Nonlinear investigation revealed that with increase in the CeO2 amount, the two-photon absorption coefficient increased due to the modification of TiO2 dipole symmetry. Suitable candidature of the nanocomposites for the fabrication of nonlinear optical devices was proved by determining the optical limiting threshold.  相似文献   

14.
A first-person account is given of the serendipitous route leading to the most accurate measurement of the gyromagnetic ratio or g-factor of the electron at the University of Michigan in the early 1950s.  相似文献   

15.
16.
This paper presents an FMM (Fast Multipole Method) for periodic boundary value problems for Maxwell’s equations in 3D. The effect of periodicity is taken into account with the help of the periodised moment to local expansion (M2L) transformation formula, which includes lattice sums. We verify the proposed method by comparing the obtained numerical results with analytic solutions for models of the multi-layered dielectric slab. We then apply the proposed method to scattering problems for periodic two-dimensional arrays of dielectric spheres and compare the obtained energy transmittances with those from the previous studies. We also consider scattering problems for woodpile crystals, where we find a passband related to a localised mode. Through these numerical tests we conclude that the proposed method is efficient and accurate.  相似文献   

17.
18.
19.
This study investigated photoluminescent properties of Sr2CaWO6:Yb3+, Na+ phosphor. The samples were successfully synthesized via a solid-state reaction method with various doping concentrations. The phosphor can efficiently absorb ultraviolet photons of 250–350 nm and transfer its absorbed photon energy to Yb3+ ions. Then subsequent quantum cutting between WO6 groups and Yb3+ ions takes place, down-converting an absorbed ultraviolet photon into two photons of 1007 nm radiations. Analyses of decay curves of different samples reveal an efficient energy transfer from WO6 groups to Yb3+ ions. Cooperative energy transfer from host to Yb3+ ions is responsible for downconversion via lifetime analysis. Quantum efficiencies were calculated, and estimated maximum efficiency reached 190%. These phosphors combine wide wavelength absorption in the ultraviolet range with high quantum efficiency, enabling potential application of efficiency enhancement of Si solar cell.  相似文献   

20.
Operator perturbation theory and the symmetry properties of the axially symmetric XYZ3 (C3v) type molecules are used for the determination of the spectroscopic parameters in the form of functions of structural parameters and parameters of the intramolecular potential function. Several relations between sets of spectroscopic parameters of these molecules are obtained. The ‘expanded local mode’ model and the general isotopic substitution theory are used to estimate the relations between spectroscopic parameters of CH3D and CHD3, on one hand, and with the Td symmetric isotopic species, CH4, on the other hand. Test calculations with the isotopic relations show that even without including prior information about the CH3D and CHD3 species, numerical results of calculations are in a good agreement both with experimental data and with results of ab initio calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号