首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High density InN/GaN nanodots were grown by pulsed mode (PM) metal–organic chemical vapor deposition (MOCVD). InN nanodots density of up to ∼5×1010 cm−2 at a growth temperature of 550 °C was achieved. The high diffusion activation energy of 2.65 eV due to high NH3 flow rate generated more reactive nitrogen adatoms on the growth surface, and is believed to be the main reason for the growth of high density InN nanodots. In addition, an anomalous temperature dependence of the PL peak energy was observed for high density InN nanodots. The high carrier concentration, due to high In vacancy (VIn) in the InN nanodots, thermally agitated to the conduction band. As the measurement temperature increased, the increase of Fermi energy resulted in blue-shifted PL peak energy. From the Arrhenius plot of integrated PL intensity, the thermal activation energy for the PM grown InN nanodots was estimated to be Ea∼51 meV, indicating strong localization of carriers in the high density InN nanodots.  相似文献   

2.
A systematic study of the crystallographic and electrical/optical properties of MOVPE-grown InN was performed, and the factors that restrict the quality of MOVPE InN were elucidated. The quality of grown InN is highly dependant on the thermal decomposition of NH3 as a nitrogen source. At a lower growth temperature (~550 °C) a shortage of active nitrogen, due to a lower decomposition rate of NH3, causes the formation of N vacancies in the grown InN. With increasing growth temperature, a more stoichiometric crystal is grown and the electrical/optical properties improve. At temperatures above 600 °C, however, deterioration occurs at the N-face of In-polar InN near the substrate interface. This deterioration results in the formation of a porous layer during high temperature (~650 °C) growth. There are a few evidences that show that the hydrogen produced by NH3 decomposition causes this degradation. Thus, improving the quality of MOVPE-grown InN by changing the growth temperature can be difficult. However, a short growth time at a high growth rate and a relatively high temperature is one effective way to solve this dilemma, and one can achieve carrier concentrations as low as 4×1018 cm−3 by growth at 650 °C for 30 min.  相似文献   

3.
High quality, straight GaN nanowires (NWs) with diameters of 50 nm and lengths up to 3 μm have been grown on Si(0 0 1) using Au as a catalyst and the direct reaction of Ga with NH3 and N2:H2 at 900 °C. These exhibited intense, near band edge photoluminescence at 3.42 eV in comparison to GaN NWs with non-uniform diameters obtained under a flow of Ar:NH3, which showed much weaker band edge emission due to strong non-radiative recombination. A significantly higher yield of β-Ga2O3 NWs with diameters of ≤50 nm and lengths up to 10 μm were obtained, however, via the reaction of Ga with residual O2 under a flow of Ar alone. The growth of GaN NWs depends critically on the temperature, pressure and flows in decreasing order of importance but also the availability of reactive species of Ga and N. A growth mechanism is proposed whereby H2 dissociates on the Au nanoparticles and reacts with Ga giving GaxHy thereby promoting one-dimensional (1D) growth via its reaction with dissociated NH3 near or at the top of the GaN NWs while suppressing at the same time the formation of an underlying amorphous layer. The higher yield and longer β-Ga2O3 NWs grow by the vapor liquid solid mechanism that occurs much more efficiently than nitridation.  相似文献   

4.
The structural and infrared properties of the highly (00.2) oriented ZnO film, randomly grown Au-catalyzed ZnO nanowires (NWs) and vertically aligned self-catalyzed ZnO NWs were compared. In the XRD analysis, (0 0 2) diffraction intensity of self-catalyzed ZnO NWs was enhanced mainly attributed to the preferential growth of NWs in [0 0 0 1] as compared to the ZnO film and the randomly grown Au-catalyzed ZnO NWs. The high UV-to-green emission ratio of self-catalyzed ZnO NWs in room temperature PL measurement indicates that they had a better crystal quality as compared to Au-catalyzed ZnO NWs and ZnO film. Infrared spectroscopy has been used to characterize these films and nanowires too. The phonon peak 407 cm−1 which related to the transverse optical (TO) vibrations perpendicular to the optical axis was observed in the IR reflectivity measurements on the highly c-oriented ZnO film. The IR peaks that appeared in the 550–580 cm−1 region of the spectra of the specimens could be assigned to the ZnO NWs as it was not observed in the ZnO film. These peaks were observed in the 550–580 cm−1 region in both s- and p-polarized light for the randomly grown Au-catalyzed ZnO NWs. In contrast, the IR peak at 580 cm−1 was clearly shown in p-polarized light but not in the s-polarized light for vertically aligned ZnO NWs. This indicated that the vibration was polarized along the vertically aligned ZnO NWs. The (00.2) orientation of the ZnO specimens could be identified by comparing the p- and s-polarized IR spectra.  相似文献   

5.
α-Si3N4 nanowires, β-SiC nanowires and SiO2 amorphous nanowires are synthesized via the direct current arc discharge method with a mixture of silicon, activated carbon and silicon dioxide as the precursor. The α-Si3N4 nanowires, β-SiC nanowires and SiO2 amorphous nanowires are about 50–200 nm in stem diameter and 10–100 μm in length. α-Si3N4 nanowires and β-SiC nanowires consist of a solid single-crystalline core along the [0 0 1] and [1 1 1] directions, respectively, wrapped within an amorphous SiOx layer. The direct current arc plasma-assisted self-catalytic vapor–solid and/or vapor–liquid–solid (VLS) growth processes are proposed as the growth mechanism of the nanowires.  相似文献   

6.
Oxygen-containing germanium (Ge) single crystals with low density of grown-in dislocations were grown by the Czochralski (CZ) technique from a Ge melt, both with and without a covering by boron oxide (B2O3) liquid. Interstitially dissolved oxygen concentrations in the crystals were determined by the absorption peak at 855 cm−1 in the infrared absorption spectra at room temperature. It was found that oxygen concentration in a Ge crystal grown from melt partially or fully covered with B2O3 liquid was about 1016 cm−3 and was almost the same as that in a Ge crystal grown without B2O3. Oxygen concentration in a Ge crystal was enhanced to be greater than 1017 cm−3 by growing a crystal from a melt fully covered with B2O3; with the addition of germanium oxide powder, the maximum oxygen concentration achieved was 5.5×1017 cm−3. The effective segregation coefficients of oxygen in the present Ge crystal growth were roughly estimated to be between 1.0 and 1.4.  相似文献   

7.
The preparation and crystal structure of a novel nonlinear optical organometallic crystal, benzyltriethylamine bis(2-thioxo-1,3-dithiole-4,5-dithiolato)nickel(III) (BTEANDT), are described. The crystal was characterized by elemental analyses, infrared and X-ray powder diffraction spectroscopy, thermal analysis and optical absorption. The third order nonlinear optical properties of crystal were investigated by using the Z-scan technique at 1064 nm with 20 ps. A self-focusing effect and a saturable absorption were observed. The nonlinear refraction coefficient (n2) and the nonlinear absorption coefficient (β) have been found to be 7.311×10−18 m2/W and −6.064×10−11 m/W when the on-axis irradiance at focus (I0) is 3.025 GW/cm2. The relationship between β and I0 was studied, which has revealed that the former is proportional to the latter. The result has been explained with the theory of absorption cross-section.  相似文献   

8.
SnO2 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates at different substrate temperatures (500–800 °C) by metalorganic chemical vapor deposition (MOCVD). Structural, electrical and optical properties of the films have been investigated. The films deposited at 500 and 600 °C are epitaxial SnO2 films with orthorhombic columbite structure, and the HRTEM analysis shows a clear epitaxial relationship of columbite SnO2(1 0 0)||YSZ(1 0 0). The films deposited at 700 and 800 °C have mixed-phase structures of rutile and columbite SnO2. The carrier concentration of the films is in the range from 1.15×1019 to 2.68×1019 cm−3, and the resistivity is from 2.48×10−2 to 1.16×10−2 Ω cm. The absolute average transmittance of the films in the visible range exceeds 90%. The band gap of the obtained SnO2 films is about 3.75–3.87 eV.  相似文献   

9.
We investigated the properties of Ge-doped, high-quality bulk GaN crystals with Ge concentrations up to 2.4×1019 cm−3. The Ge-doped crystals were fabricated by hydride vapor phase epitaxy with GeCl4 as the dopant source. Cathodoluminescence imaging revealed no increase in the dislocation density at even the highest Ge concentration, with values as low as 3.4×106 cm−2. The carrier concentration, as determined by Hall measurement, was almost identical to the combined concentration of Ge and unintentionally incorporated Si. The electron mobilities were 260 and 146 cm2 V−1 s−1 for n=3.3×1018 and 3.35×1019 cm−3, respectively; these values are markedly larger than those reported in the past for Ge-doped GaN thin films. The optical absorption coefficient was quite small below the band gap energy; it slightly increased with increase in Ge concentration. Thermal conductivity, estimated by the laser-flash method, was virtually independent of Ge concentration, maintaining an excellent value around 2.0 W cm−1 K−1. Thermal expansion coefficients along the a- and m-axes were approximately constant at 5.0×10−6 K−1 in the measured doping concentration range.  相似文献   

10.
Void formation at the interface between thick AlN layers and (0 0 0 1) sapphire substrates was investigated to form a predefined separation point of the thick AlN layers for the preparation of freestanding AlN substrates by hydride vapor phase epitaxy (HVPE). By heating 50–200 nm thick intermediate AlN layers above 1400 °C in a gas flow containing H2 and NH3, voids were formed beneath the AlN layers by the decomposition reaction of sapphire with hydrogen diffusing to the interface. The volume of the sapphire decomposed at the interface increased as the temperature and time of the heat treatment was increased and as the thickness of the AlN layer decreased. Thick AlN layers subsequently grown at 1450 °C after the formation of voids beneath the intermediate AlN layer with a thickness of 100 nm or above self-separated from the sapphire substrates during post-growth cooling with the aid of voids. The 79 μm thick freestanding AlN substrate obtained using a 200 nm thick intermediate AlN layer had a flat surface with no pits, high optical transparency at wavelengths above 208.1 nm, and a dislocation density of 1.5×108 cm−2.  相似文献   

11.
Nitrogen was incorporated into ZnO films grown by metalorganic chemical vapour deposition (MOCVD) on ZnO substrates using DMZn-TEN, tert-butanol and diallylamine, respectively, as zinc, oxygen and doping sources. The carrier gas was either hydrogen or nitrogen and the partial pressure ratio (RVI/II) was varied in order to favor the nitrogen incorporation and/or reduce carbon related defects. The ZnO films have been characterized by Micro-Raman scattering and SIMS measurements. SIMS measurements confirm the nitrogen incorporation with concentrations extending from ∼1019 cm−3 to ∼4×1020 cm−3. Raman spectra show nitrogen local vibration modes in films grown at low RVI/II ratio and using H2 as carrier gas. However, a vibration band attributed to carbon clusters dominates the Raman spectra for films grown with N2 carrier. The contribution of N complexes was discussed. The strain was calculated for the as-grown and annealed films and it changes from tensile to compressive after annealing.  相似文献   

12.
We present a detailed investigation on the influence of deposition conditions on morphological, structural and optical properties of InN films deposited on Si(1 1 1) and GaN-on-sapphire templates by reactive radio-frequency (RF) sputtering. The deposition parameters under study are nitrogen content in the sputtering gas, substrate–target distance, substrate temperature and RF power. X-ray diffraction measurements confirm the (0 0 0 1) preferred growth orientation and the wurtzite crystallographic structure of the material. For optimized deposition conditions, InN on Si(1 1 1) substrates presents smooth surface with root-mean-square roughness ∼1 nm. Surface quality of the InN films can be further improved by deposition on GaN-on-sapphire templates, achieving root-mean-square roughness as low as ∼0.4 nm, comparable to that of the underlying substrate. The room-temperature absorption edge is located at 1.70 eV. Intense low-temperature photoluminescence peaking at 1.60 eV is observed.  相似文献   

13.
We have obtained high-quality, crack-free AlN wafers using a convex thermal field inside the growth chamber. Free-standing AlN boules of 15 mm in height and 15 mm in diameter were grown. The carbon concentration was found to be similar in all parts of the boule (∼8×1018 cm−3) while the initial O concentration was higher (∼1×1019 cm−3) and slightly decreased during growth. It was found that O incorporated differently on different crystallographic faces. High resolution XRD showed a continuous improvement in crystal quality as a function of boule length. The full width at half maximum (FWHM) of the double crystal rocking curves decreased from 78 in at the beginning of growth to 13 in at the growth end. To the best of our knowledge, this is the first report on impurity incorporation on different crystallographic facets obtained from the same boule.  相似文献   

14.
Novel dumbbell-like SrSO4 with hierarchical architecture was fabricated with a facile template-free aqueous solution method at room temperature. The crystallographic morphology of SrSO4 products depends mainly on the pH value of the reaction solution. The SrSO4 products exhibit a dumbbell-like hierarchical architecture at pH=3 and 5, and have a tablet-like crystallographic morphology at pH=1 when keeping other reaction parameters unchanged. The dumbbell-like SrSO4 synthesized at pH=3 has a length of 8–14 μm, and is composed of numerous well-aligned single crystalline nanoplates with an average width of 140 nm and a length of 0.7–1 μm. The Brunauer–Emmett–Teller (BET) surface area of the crystallized SrSO4 products is about 2.8 m2 g−1. A formation mechanism is proposed for the evolution process of dumbbell-like SrSO4 with hierarchical architecture.  相似文献   

15.
A chemically assisted vapour phase transport (CVT) method is proposed for the growth of bulk ZnO crystals. Thermodynamic computations have confirmed the possibility of using CO as a sublimation activator for enhancing the sublimation rate of the feed material in a large range of pressures (10−3 to 1 atm) and temperatures (800–1200 °C). Growth runs in a specific and patented design yielded single ZnO crystals up to 46 mm in diameter and 8 mm in thickness, with growth rates up to 400 μm/h. These values are compatible with an industrial production rate. N type ZnO crystals (μ=182 cm2/(V s) and n=7 1015 cm−3) obtained by this CVT method (Chemical Vapour Transport) present a high level of purity (10–30 times better than hydrothermal ZnO crystals), which may be an advantage for obtaining p-type doped layers ([Li] and [Al] <10+15 cm−3). Structural (HR-XRD), defect density (EPD), electrical (Hall measurements) and optical (photoluminescence) properties are presented.  相似文献   

16.
Well-crystallized straight Si nanowires (SiNWs) were successfully prepared in large scale via a facile reaction between NaN3 and Na2SiF6 at 600 °C without using any catalyst. Characterization by X-ray powder diffraction and transmission electron microscopy demonstrates that the as-obtained product is pure-phase cubic SiNWs with diameters of 40 nm or so, and lengths of several micrometers. And the SiNWs with spherical tips can be obtained at a temperature as low as 300 °C. Heating temperature and holding time have crucial influence on the synthesis and morphology of the SiNWs. An oxide-assisted growth mechanism is responsible for the formation of the SiNWs.  相似文献   

17.
Gd2O3-doped CeO2 (Gd0.1Ce0.9O1.95, GDC) thin films were synthesized on (1 0 0) Si single crystal substrates by a reactive radio frequency magnetron sputtering technique. Structures and surface morphologies were characterized by X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and one-dimensional power spectral density (1DPSD) analysis. The XRD patterns indicated that, in the temperature range of 200–700 °C, f.c.c. structured GDC thin films were formed with growth orientations varying with temperature—random growth at 200 °C, (2 2 0) textures at 300–600 °C and (1 1 1) texture at 700 °C. GDC film synthesized at 200 °C had the smoothest surface with roughness of Rrms=0.973 nm. Its 1DPSD plot was characterized with a constant part at the low frequencies and a part at the high frequencies that could be fitted by the f−2.4 power law decay. Such surface feature and scaling behavior were probably caused by the high deposition rate and random growth in the GDC film at this temperature. At higher temperatures (300–700 °C), however, an intermediate frequency slope (−γ2≈−2) appeared in the 1DPSD plots between the low frequency constant part and the high frequency part fitted by f−4 power law decay, which indicated a roughing mechanism dominated by crystallographic orientation growth that caused much rougher surfaces in GDC films (Rrms>4 nm).  相似文献   

18.
Growth of tin oxide thin films using molecular beam epitaxy in a pyrolyzed nitrogen dioxide atmosphere on a titanium dioxide (1 1 0) substrate was investigated using X-ray photoelectron spectroscopy (XPS), electron diffraction, and atomic force microscopy (AFM). Properties of deposited films were studied for their dependence on substrate temperature and oxidation gas pressure. Analyses using XPS data revealed that tin atoms were fully oxidized to Sn4+ and SnO2 films were grown epitaxially in deposition conditions of substrate temperatures of 627 K or higher and NO2 pressure greater than 3×10−3 Pa. At a substrate temperature of 773 K, a smooth surface with atomic steps was visible in the SnO2 films, but above or below this temperature, fine grains with crystal facets or porous structures appeared. At pressures of 8×10−4 to 3×10−4 Pa, the randomly oriented SnO phase was dominantly grown. Further decreasing the pressure, the Sn metal phase, which was epitaxially crystallized at less than 500 K, was also grown.  相似文献   

19.
We have investigated the growth of magnesium-doped GaP (GaP:Mg) layers on GaN by metalorganic chemical vapor deposition. The hole carrier concentration increased linearly from 0.8×1018 to 4.2×1018 cm−3 as the Bis(cyclopentadienyl) magnesium (Cp2Mg) mole flow rate increased from 1.2×10−7 to 3.6×10−7 mol/min. However, the hole carrier concentration decreased when the CP2Mg mole flow rate was further increased. The double crystal X-ray diffraction (DCXRD) rocking curves showed that the GaP:Mg layers were single crystalline at low CP2Mg molar flow. However, the GaP:Mg layers became polycrystalline if the CP2Mg molar flow was too high. The decrease in hole carrier concentration at high CP2Mg molar flow was due to crystal quality deterioration of the GaP layer, which also resulted in the low hole mobility of the GaP:Mg layer.  相似文献   

20.
The growth of GaN based structures on Si(1 1 0) substrates by molecular beam epitaxy using ammonia as the nitrogen precursor is reported. The structural, optical and electrical properties of such structures are assessed and are quite similar to the ones obtained on Si(1 1 1) in-spite of the very different substrate surface symmetry. A threading dislocation density of 3.7×109 cm−2 is evaluated by transmission electron microscopy, which is in the low range of typical densities obtained on up to 2 μm thick GaN structures grown on Si(1 1 1). To assess the potential of such structure for device realization, AlGaN/GaN high electron mobility transistor and InGaN/GaN light emitting diode heterostructures were grown and their properties are compared with the ones obtained on Si(1 1 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号