首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Wide band-gap BeZnO layers were grown on Al2O3 (0 0 0 1) substrate using radio-frequency magnetron co-sputtering. The rate of BexZn1−xO crystallized as a hexagonal structure was x=0.2. From the X-ray photoelectron spectroscopy measurement, the O–Zn bonds relating the crystal structure and the Be–O bonds related to the deviation of the stoichiometry in the BeZnO layer were caught at 530.4 and 531.7 eV in the O 1s spectrum, respectively. Thus, the observance on the Be 1s peak of 113.2 eV associated with the bonding Be–O indicates that the sputtered Be atoms are substituted for the host-lattice site in ZnO. This Be–O bonding shows a relatively low intense and broadening spectrum caused by large fluctuation of Be content in the BeZnO layer. From the photoluminescence and transmittance measurement, the free exciton and the neutral donor-bound exciton (D0, X) emissions were observed at 3.7692 and 3.7313 eV, respectively, and an average transmittance rate over 95% was achieved in a wide ultraviolet (UV)–visible region. Also, the binding energy for the (D0, X) emission was extracted to be 37.9 meV. Through the wide band-gap material BeZnO, we may open some possibilities for fabricating a ZnO-based UV light-emitting diode to be utilized as a barrier layer comprised of the ZnO/BeZnO quantum well structure and/or an UV light emitting material itself.  相似文献   

2.
The use of a selenium–tellurium (SeTe) mixed source in the isothermal close space sublimation growth of CdSe epilayers is considered. The epitaxial growth was performed in flowing helium by sequential exposures of the substrate to vapors of the mixed SeTe source and elemental cadmium at temperatures within 350–410 °C. In spite of the mixed source (proposed to decrease the partial pressure of Se), tellurium incorporation was small and CdSexTe(1−x) (x∼0.98) epilayers were obtained. X-ray diffraction reciprocal space mapping shows the existence of hexagonal inclusions mainly on the (1 1 1) facets of the cubic phase. Material deposition on areas of the graphite crucible exposed to the sources, contamination of the Cd source and large growth rates suggest the existence of a selenium transport process via graphite. This transport might be the result of the combination of selenium deposition on graphite with a subsequent activated desorption of selenium under cadmium exposure. It affects Cd source purity and growth kinetic bringing on a modification of the usual atomic layer deposition regimen; however, a reproducible growth rate of the epilayers was obtained.  相似文献   

3.
Vertically well-aligned ZnO nanorods were fabricated in-situ and ex-situ on ZnO homo-buffer layers using catalyst-free metal-organic chemical vapor deposition. Field-emission electron microscopy measurements demonstrated that the nanorods were well aligned and had a uniform diameter of 70–100 nm depending on the growth temperature, irrespective of growth conditions, in-situ and ex-situ. X-ray diffraction measurements demonstrated that the ZnO nanorods and the ZnO buffer layers had a wurtzite structure, and that the crystal quality of the nanorods grown on a smooth surface was better than that of the nanorods grown on a rough surface. Field-emission transmission electron microscopy measurements revealed the presence of a disordered layer at the interface of the nanorod and the buffer layer.  相似文献   

4.
LuAG:Ce single crystals with various activator concentrations were grown by the vertical Bridgman technique. Characterization of crystals was done in terms of actual doping level, macroscopic defects and degree of non-equivalent substitutions by Lu for Al in octahedral lattice sites. Scintillation measurements were performed using 2×2×8 mm3 shaped samples with Ce concentration in the range 0.05–0.55 at%. Essential improvement of performance was demonstrated in samples containing ≥0.2 at% of Ce; the light yield measured in LuAG:Ce (0.55 at%) was about 26000 ph/MeV, or close to that of LSO.  相似文献   

5.
Nonpolar (1 1–2 0) a-plane GaN films have been grown using the multi-buffer layer technique on (1–1 0 2) r-plane sapphire substrates. In order to obtain epitaxial a-plane GaN films, optimized growth condition of the multi-buffer layer was investigated using atomic force microscopy, high resolution X-ray diffraction, and transmission electron microscopy measurements. The experimental results showed that the growth conditions of nucleation layer and three-dimensional growth layer significantly affect the crystal quality of subsequently grown a-plane GaN films. At the optimized growth conditions, omega full-width at half maximum values of (11–20) X-ray rocking curve along c- and m-axes were 430 and 530 arcsec, respectively. From the results of transmission electron microscopy, it was suggested that the high crystal quality of the a-plane GaN film can be obtained from dislocation bending and annihilation by controlling of the island growth mode.  相似文献   

6.
We investigated the scintillation properties of Cs2LiGdCl6:Ce3+ as a function of the Ce concentration. X-ray excited luminescence spectra of the scintillation material showed broad emission bands between 360 and 460 nm, with two overlapping peaks, due to the d→f transitions on Ce3+ ions. The samples provide good scintillation results. The energy resolution was found to be 5.0% (FWHM) at 662 keV for 10% Ce sample. Under γ-ray excitation, Cs2LiGdCl6:Ce3+ showed three exponential decay time components of about 130–200 ns decay time constant. The light output of the investigated samples was 20,000 photons/MeV for a 10% Ce concentration. The light output deviation from the linear response is within 7% between the energy range of 31 and 1333 keV. Overall, the scintillation properties confirm that Cs2LiGdCl6:Ce3+ single crystal is a promising candidate for medical imaging and radiation detection.  相似文献   

7.
α-Si3N4 nanowires, β-SiC nanowires and SiO2 amorphous nanowires are synthesized via the direct current arc discharge method with a mixture of silicon, activated carbon and silicon dioxide as the precursor. The α-Si3N4 nanowires, β-SiC nanowires and SiO2 amorphous nanowires are about 50–200 nm in stem diameter and 10–100 μm in length. α-Si3N4 nanowires and β-SiC nanowires consist of a solid single-crystalline core along the [0 0 1] and [1 1 1] directions, respectively, wrapped within an amorphous SiOx layer. The direct current arc plasma-assisted self-catalytic vapor–solid and/or vapor–liquid–solid (VLS) growth processes are proposed as the growth mechanism of the nanowires.  相似文献   

8.
Void formation at the interface between thick AlN layers and (0 0 0 1) sapphire substrates was investigated to form a predefined separation point of the thick AlN layers for the preparation of freestanding AlN substrates by hydride vapor phase epitaxy (HVPE). By heating 50–200 nm thick intermediate AlN layers above 1400 °C in a gas flow containing H2 and NH3, voids were formed beneath the AlN layers by the decomposition reaction of sapphire with hydrogen diffusing to the interface. The volume of the sapphire decomposed at the interface increased as the temperature and time of the heat treatment was increased and as the thickness of the AlN layer decreased. Thick AlN layers subsequently grown at 1450 °C after the formation of voids beneath the intermediate AlN layer with a thickness of 100 nm or above self-separated from the sapphire substrates during post-growth cooling with the aid of voids. The 79 μm thick freestanding AlN substrate obtained using a 200 nm thick intermediate AlN layer had a flat surface with no pits, high optical transparency at wavelengths above 208.1 nm, and a dislocation density of 1.5×108 cm−2.  相似文献   

9.
We have performed a detailed investigation of the metal-organic chemical vapor deposition (MOCVD) growth and characterization of InN nanowires formed on Si(1 1 1) substrates under nitrogen rich conditions. The growth of InN nanowires has been demonstrated by using an ion beam sputtered (∼10 nm) Au seeding layer prior to the initiation of growth. We tried to vary the growth temperature and pressure in order to obtain an optimum growth condition for InN nanowires. The InN nanowires were grown on the Au+In solid solution droplets caused by annealing in a nitrogen ambient at 700 °C. By applying this technique, we have achieved the formation of InN nanowires that are relatively free of dislocations and stacking faults. Scanning electron microscopy (SEM) showed wires with diameters of 90–200 nm and lengths varying between 3 and 5 μm. Hexagonal and cubic structure is verified by high resolution X-ray diffraction (HR-XRD) spectrum. Raman measurements show that these wurtzite InN nanowires have sharp peaks E2 (high) at 491 cm−1 and A1 (LO) at 591 cm−1.  相似文献   

10.
A high optical quality erbium doped Lu2SiO5 single crystal has been grown by the Czochralski method. The distribution coefficient of Er3+ was measured to be ∼0.926. The absorption and emission spectra as well as the fluorescence decay curve of the excited state 4I13/2 were measured at room temperature. The spectroscopic parameters were calculated using the Judd–Ofelt theory, and the J–O parameters Ω2, Ω4 and Ω6 were found to be 4.451×10-20, 1.614×10-20 and 1.158×10-20 cm2, respectively. The room-temperature fluorescence lifetime of the Er3+4I13/24I15/2 transition was measured to be 7.74 ms. The absorption and emission cross-section as well as the gain cross-section in the eye-safe regime of 1400–1700 nm were also determined and discussed.  相似文献   

11.
As described by Kutoglu (1976 [16]), single crystals of As4S4 (II) phase have been grown using a new two-step synthesis that drastically increases the reproducibility that is attainable in synthetic experiments. First, through photo-induced phase transformation, pararealgar powder is prepared as a precursor instead of AsS melt. Then it is dissolved and recrystallized from CS2 solvent. Results show that single crystals of the As4S4 (II) phase were obtained reproducibly through the dissolution–recrystallization process. Single crystals of As4S4 (II) obtained using this method were translucent and showed a uniform yellow-orange color. The crystal exhibits a platelet-like shape as a thin film with well-developed faces (0 1 0) and (0 1¯ 0). The grown crystals are as large as 0.50×0.50×0.01 mm. They were characterized using powder and single crystal X-ray diffraction techniques to confirm the phase identification and the lattice parameters. The As4S4 (II) phase crystallizes in monoclinic system with cell parameters a=11.202(4) Å, b=9.954(4) Å, c=7.142(4) Å, β=92.81(4)°, V=795.4(6) Å3, which shows good agreement with the former value. Raman spectroscopic studies elucidated the behavior of the substance and the relation among phases of tetra-arsenic tetrasulfide.  相似文献   

12.
Vertically aligned SnO2 nanowires (NWs) were grown for the first time by a vapor–liquid–solid method on c-sapphire with gold as a catalyst under Ar gas flow. Electron backscatter diffraction analysis indicated the NWs are single crystalline having the rutile structure, grow vertically along the [1 0 0] direction, and exhibit a consistent epitaxial relationship where lattice mismatch is estimated to be 0.3% along the SnO2 [0 1 0] direction. The growth of these NWs is sensitive to many parameters, including growth duration, substrate type, source vapor concentration, and the thickness of the catalyst layer. Photoluminescence measurements at room temperature showed that the vertically aligned NWs exhibit an intense transition at 3.64 eV, a near band-edge transition which is rarely observed in SnO2.  相似文献   

13.
The sublimation–recombination crystal growth of bulk yttrium nitride crystals is reported. The YN source material was prepared by reacting yttrium metal with nitrogen at 1200 °C and 800 Torr total pressure. Crystals were produced by subliming this YN from the source zone, and recondensing it from the vapor as crystals at a lower temperature (by 50 °C). Crystals were grown from 2000 to 2100 °C and with a nitrogen pressure from 125 to 960 Torr. The highest rate was 9.64×10−5 mol/h (9.92 mg/h). The YN sublimation rate activation energy was 467.1±21.7 kJ/mol. Individual crystals up to 200 μm in dimension were prepared. X-ray diffraction confirmed that the crystals were rock salt YN, with a lattice constant of 4.88 Å. The YN crystals were unstable in air; they spontaneously converted to yttria (Y2O3) in 2–4 h. A small fraction of cubic yttria was detected in the XRD of a sample exposed to air for a limited time, while non-cubic yttria was detected in the Raman spectra for a sample exposed to air for more than 1 h.  相似文献   

14.
We report on the epitaxial growth of the intrinsic ferromagnetic semiconductor GdN on Si (1 1 1) substrates buffered by a thick AlN layer, forming a heteroepitaxial system with promise for spintronics. Growth is achieved by depositing Gd in the presence of unactivated N2 gas, demonstrating a reactivity at the surface that is sufficient to grow near stoichiometric GdN only when the N2:Gd flux ratio is at least 100. Reflection high-energy electron diffraction and X-ray diffraction show fully (1 1 1)-oriented epitaxial GdN films. The epitaxial quality of the films is assessed by Rutherford backscattering spectroscopy carried out in random and channelling conditions. Magnetic measurements exhibit a Curie temperature at 65 K and saturation magnetisation of 7 μB/Gd in agreement with previous bulk and thin-film data. Hall effect and resistance data establish that the films are heavily doped semiconductors, suggesting that up to 1% of the N sites are vacant.  相似文献   

15.
Shape evolution of ZnO crystals from twinned disks to single spindles was studied through solvothermal synthesis in binary solvents N,N-diethylformamide (DEF) and methanol (MeOH). The MeOH content in DEF had large influence on the morphology of the obtained ZnO crystals. In MeOH-free DEF, well-shaped ZnO twinned disks with perfect mirror symmetry could be formed through the assembly of ZnO46−–julolidinium–ZnO46− growth units on the (0 0 0 1) growth interfaces. For small amounts of MeOH (MeOH/DEF=0.04), elongated twinned disks were formed since the growth along the polar c-axis was enhanced. With increasing MeOH content (MeOH/DEF=0.1), twinned rods with reduced mirror symmetry were formed. When a large amount of MeOH was added to DEF (MeOH/DEF=0.5), single spindles rather than twinned disks or twinned rods were obtained. A similar shape evolution of zinc oxide was observed in binary solvents DEF and N,N-dimethylformamide (DMF), suggesting that the growth of ZnO crystals with tuneable shape and size can be controlled by the composition of the binary solvent mixture.  相似文献   

16.
Non-doped and lithium doped nickel oxide crystalline films have been prepared onto quartz and crystalline alumina substrates at high substrate temperature (600 °C) by the pneumatic spray pyrolysis process using nickel and lithium acetates as source materials. The structure of all the deposited films was the crystalline cubic phase related to NiO, although this crystalline structure was a little bit stressed for the films with higher lithium concentration. The grain size had values between 60 and 70 nm, almost independently of doping concentration. The non-doped and lithium doped films have an energy band gap of the order of 3.6 eV. Hot point probe results show that all deposited films have a p-type semiconductor behavior. From current–voltage measurements it was observed that the electrical resistivity decreases as the lithium concentration increases, indicating that the doping action of lithium is carried out. The electrical resistivity changed from 106 Ω cm for the non-doped films up to 102 Ω cm for the films prepared with the highest doping concentration.  相似文献   

17.
Pr1%:K(Y1−xLux)3F10 (x=0, 0.2, 0.4) single crystals were grown by the μ-PD method. All the grown crystals were greenish and perfectly transparent without any inclusions or cracks. Radioluminescence spectra and decay kinetics of the Pr1%:K(Y,Lu)3F10 crystals were measured. Emission from the Pr3+ 5d–4f transition, peaking around 260 nm and of the decay time of around 22 ns were observed. The 5d–4f emission intensities of the Pr1%:K(Y,Lu)3F10 crystals were higher than that of the standard BGO scintillator.  相似文献   

18.
A chemically assisted vapour phase transport (CVT) method is proposed for the growth of bulk ZnO crystals. Thermodynamic computations have confirmed the possibility of using CO as a sublimation activator for enhancing the sublimation rate of the feed material in a large range of pressures (10−3 to 1 atm) and temperatures (800–1200 °C). Growth runs in a specific and patented design yielded single ZnO crystals up to 46 mm in diameter and 8 mm in thickness, with growth rates up to 400 μm/h. These values are compatible with an industrial production rate. N type ZnO crystals (μ=182 cm2/(V s) and n=7 1015 cm−3) obtained by this CVT method (Chemical Vapour Transport) present a high level of purity (10–30 times better than hydrothermal ZnO crystals), which may be an advantage for obtaining p-type doped layers ([Li] and [Al] <10+15 cm−3). Structural (HR-XRD), defect density (EPD), electrical (Hall measurements) and optical (photoluminescence) properties are presented.  相似文献   

19.
Nitride-based metal–semiconductor–metal ultraviolet (UV) photodetectors prepared on Si (1 1 1) substrate with stacked buffer layers were proposed and prepared. With 5 V applied bias, it was found that dark current of the fabricated device was only 7.95×10−12 A. With an applied bias of 10 V, it was found that peak responsivity was 0.06 A/W, corresponding to quantum efficiency of 21.2% while UV/visible rejection ratio was 244. With 5 V applied bias, it was found that noise equivalent power, NEP and detectivity, D*, of our detector were 1.70×10−13 W and 1.18×1013 cm Hz0.5 W−1, respectively.  相似文献   

20.
The high dislocation density (2×107/cm2 for a thickness of 7 μm) in CdTe(2 1 1)B on Ge(2 1 1) has become a roadblock for the technological exploitation of this material. We present a systematic study of in situ and post-growth annealing cycles aimed at reducing it. An etch pit density of 2×106/cm2 was achieved by optimizing the growth conditions and annealing the samples in situ. This finding was corroborated by high-resolution X-ray diffraction, atomic force microscopy, photoluminescence and ellipsometry measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号