首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 89 毫秒
1.
MCM-41 mesoporous material was chosen as a template of very small Fe3O4 particles. The results of structural and magnetic studies of magnetite nanowires are reported. The average length of these nanowires is about 70 nm and their diameter is 3 nm. Magnetite polycrystalline nanowires were characterized by means of X-ray diffraction and 57Fe Mössbauer spectroscopy (MS). Almost 80% of the particles exist in a superparamagnetic state at room temperature. Mössbauer measurements also provided evidence that the composites displayed a distribution of magnetic particles by size. As a result, strong changes of superparamagnetic and magnetic relative contributions along with temperature were observed.  相似文献   

2.
Two‐dimensional plate‐like Fe3O4 nanocrystals and nanoparticles could be synthesized by a simple one‐step sonochemical method through ultrasonic irradiation in reverse co‐precipitation solution at low temperature. This technique provided a facile and rapid way to prepare Fe3O4nanocrystals with different morphology and size. Magnetite nanoplates were synthesized with only ferrous salt adding into alkali solution, and adding ferric ions with low molar ratio in the metal salts solution would lead to the formation of very small magnetite nanoparticles (∼10 nm). The size of as‐prepared magnetite nanoparticles increased with increasing reaction temperature and showed narrow size distribution, the standard deviation less than 2 nm. This investigation indicated that ferric ions had significant influence on the morphology of Fe3O4 nanocrystals. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Barium titanate (BaTiO3: BT) nanoparticles were synthesized by the hydrothermal method in the presence of dispersants using a continuous supercritical flow reaction system. The reactants of TiO2 sol/Ba(NO3)2 mixed solution and KOH solution were used as starting materials and that was heated quickly up to 400 °C under the pressure of 30 MPa for 8 ms as reaction time. The dispersant solution such as polyacrylic acid (PAA) and polyoxyethylene(20) sorbitan monooleate (Tween 80) was injected in the cooling process after the reaction. The crystal phase of the obtained particles was identified as perovskite cubic BaTiO3 by X-ray diffractometry (XRD) and Raman spectroscopy. Raman spectra and thermogravimetric data revealed that PAA and Tween 80 fabricated hybrid BT nanoparicles. Primarily particle size of the BaTiO3 nanoparticle was determined by means of BET surface area, as small as less than 10 nm irrespective of dispersants. In contrast, dispersed particle size in solution measured by dynamic light scattering (DLS) technique decreased from 282 nm to less than 100 nm depending on the dispersant. Aggregation of BaTiO3 nanoparticles might be depressed in the presence of dispersants, especially PAA is the most effective among the dispersants examined.  相似文献   

4.
Synthesis of zinc borate was conducted in a laboratory and a pilot scale batch reactor to see the influence of process variables on the reaction parameters and the final product, 2ZnO·3B2O3·3.5H2O. Effects of stirring speed, presence of baffles, amount of seed, particle size and purity of zinc oxide, and mole ratio of H3BO3:ZnO on the zinc borate formation reaction were examined at a constant temperature of 85 °C in a laboratory (4 L) and a pilot scale (85 L) reactor. Products obtained from the reaction in both reactors were characterized by chemical analysis, X-ray diffraction, particle size distribution analysis, thermal gravimetric analysis and scanning electron microscopy. The kinetic data for the zinc borate production reaction was fit by using the logistic model. The results revealed that the specific reaction rate, a model parameter, decreases with increase in particle size of zinc oxide and the presence of baffles, but increases with increase in stirring speed and purity of zinc oxide; however, it is unaffected with the changes in the amount of seed and reactants ratio. The reaction completion time is unaffected by scaling-up.  相似文献   

5.
《Journal of Non》2005,351(49-51):3693-3698
Transparent crack-free and bubble-free Fe3+ doped SiO2 nanostructured gel-glasses were obtained by the sol–gel process. The process involves the hydrolysis and condensation of an appropriate molar ratio of tetraethoxysilane (TEOS), absolute ethanol, nitric acid and ferric nitrate, followed by stepwise annealing at temperatures ranging from 110 °C to 1000 °C. The structural variation of the gel-glasses and their influence on physical properties during annealing has been studied. It has been observed that monolithicity and chemical environment around Fe3+ in the gel-glasses are strongly dependent on the annealing temperatures. The colour of gel-glass samples is different for different annealing temperatures, mainly due to the different co-ordination state of Fe3+ and the generation of Fe2O3 colloids of size 20–60 nm in the silica matrix. The annealing process facilitates the tuning of the UV–visible transmission cut-off edge in high optical quality Fe3+ doped silica gel-glasses. A marked difference in the magnetic properties of these glasses is also observed with annealing temperatures.  相似文献   

6.
The effect of Fe2+, Fe3+, and Cr3+ ions on crystallization of calcium sulfate dihydrate (gypsum) produced by the reaction between calcium hydroxide suspension and sulphuric acid solution was investigated at 3.5 pH and 65°C in the absence and presence of 2500 ppm citric acid concentration. Crystal size distributions, filtration rates, and morphology of gypsum were determined and discussed as a function of ion concentration. Average particle size of gypsum was not affected significantly by the presence of Fe2+, Fe3+, and Cr3+ ions individually. Variation of gypsum morphology depending on ion concentration affected the filtration characteristics. The presence of Fe3+ or Cr3+ ions besides 2500 ppm citric acid influenced both average particle size and filtration characteristics. The effect of citric acid on gypsum morphology was suppressed at high Fe3+ and Cr3+ ion concentrations. The change of morphology is related to the complex formation between Fe3+ or Cr3+ ions and citric acid at high ion concentrations. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The optical absorption spectra of LiNbO3 (LN), Fe:LiNbO3 (Fe:LN), and Zn:Fe:LiNbO3 (Zn:Fe:LN) single crystals grown by Bridgman method were measured and compared. The absorption characteristics of the samples and the effects of growth process conditions on the absorption spectra were investigated. The Fe, Zn and Li concentrations in the crystals were analyzed by inductively coupled plasma (ICP) spectrometry. The results indicated that the overall Fe ion and Fe2+ concentration in Fe:LN and Zn:Fe:LN crystals increased along the growing direction. The incorporation of ZnO in Fe:LN crystal induced increase of Fe2+ in the crystal. Among Fe‐doped and Zn:Fe‐codoped LN single crystals, 3 mol% ZnO doped Fe:LN had a biggest change of Fe2+ ion concentration from bottom to top part of crystal. The effects of technical conditions (atmosphere and thermal history) on Fe2+ ion concentration were discussed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The morphology and size of CaCO3 precipitated by CO2–Ca(OH)2 reaction in stirred tank and Couette-Taylor reactors were experimentally investigated. The Taylor vortex in CT reactor encouraged more homogeneous mixing conditions, resulting in the production of smaller particles with a uniform shape throughout the reactor. However, in the stirred tank reactor, the local non-homogeneity of the mixing intensity led to the simultaneous production of cube-like and spindle-like particles at a high reactant concentration. The agglomeration of CaCO3 resulted in a bimodal size distribution. However, the morphology and size of a single particle were predominantly changed by the excess species in the solution. The largest mean size and cube-like particles were observed under stoichiometric reaction conditions. As the excess species concentration increased, the morphology was transformed to a spindle-like shape and the mean size decreased due to selective adsorption of the excess species on the crystal faces.  相似文献   

9.
A Yb3+-doped CaYAlO4 laser crystal has been grown by the Czochralski technique. The segregation coefficient was measured by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). The cell parameters were analyzed with X-ray diffraction experiments. Color defects in Yb:CaYAlO4 have been evidenced to be similar to those in undoped CaYAlO4. The polarized absorption spectra and the fluorescence spectrum of the Yb:CaYAlO4 crystal were measured at room temperature. The fluorescence decay time of the Yb3+ ion was investigated. The results show that Yb:CaYAlO4 has potential as a laser gain medium for an ultrashort laser system.  相似文献   

10.
We investigated the scintillation properties of Cs2LiGdCl6:Ce3+ as a function of the Ce concentration. X-ray excited luminescence spectra of the scintillation material showed broad emission bands between 360 and 460 nm, with two overlapping peaks, due to the d→f transitions on Ce3+ ions. The samples provide good scintillation results. The energy resolution was found to be 5.0% (FWHM) at 662 keV for 10% Ce sample. Under γ-ray excitation, Cs2LiGdCl6:Ce3+ showed three exponential decay time components of about 130–200 ns decay time constant. The light output of the investigated samples was 20,000 photons/MeV for a 10% Ce concentration. The light output deviation from the linear response is within 7% between the energy range of 31 and 1333 keV. Overall, the scintillation properties confirm that Cs2LiGdCl6:Ce3+ single crystal is a promising candidate for medical imaging and radiation detection.  相似文献   

11.
12.
Uniform octahedral YVO4:Eu3+ microcrystals have been successfully prepared through a designed two-step hydrothermal conversion method. One-dimensional precursor Y4O(OH)9NO3 was first prepared through a simple hydrothermal process without using any surfactant, catalyst or template. Subsequently, well-defined octahedral YVO4 was synthesized at the expense of the precursor during a hydrothermal conversion process. XRD results demonstrate that the diffraction peaks of the final product can be well indexed to the pure tetragonal phase of YVO4. The SEM and TEM images indicate that the as-prepared YVO4 sample has regular octahedral shape with sharp corners and well-defined edges. The as-obtained YVO4:Eu3+ phosphor shows strong red emission under ultraviolet excitation or low-voltage electron beam excitation. Furthermore, this facile and general conversion method may be of much significance in the synthesis of many other lanthanide compounds with uniform morphology.  相似文献   

13.
Monodisperse magnetite nanoparticles coated with organic ligands have been chemically synthesised by using the poliol method. Modifying the synthetic conditions, particle diameter can be tuned from 3.5 to 7.1 nm. In order to investigate the critical size effects on the magnetic behavior of the samples, Fe3O4 nanoparticles have been fully characterized by X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, SQUID magnetometry and electron paramagnetic resonance spectroscopy.  相似文献   

14.
Shape evolution of ZnO crystals from twinned disks to single spindles was studied through solvothermal synthesis in binary solvents N,N-diethylformamide (DEF) and methanol (MeOH). The MeOH content in DEF had large influence on the morphology of the obtained ZnO crystals. In MeOH-free DEF, well-shaped ZnO twinned disks with perfect mirror symmetry could be formed through the assembly of ZnO46−–julolidinium–ZnO46− growth units on the (0 0 0 1) growth interfaces. For small amounts of MeOH (MeOH/DEF=0.04), elongated twinned disks were formed since the growth along the polar c-axis was enhanced. With increasing MeOH content (MeOH/DEF=0.1), twinned rods with reduced mirror symmetry were formed. When a large amount of MeOH was added to DEF (MeOH/DEF=0.5), single spindles rather than twinned disks or twinned rods were obtained. A similar shape evolution of zinc oxide was observed in binary solvents DEF and N,N-dimethylformamide (DMF), suggesting that the growth of ZnO crystals with tuneable shape and size can be controlled by the composition of the binary solvent mixture.  相似文献   

15.
Magnetic nanoparticles exhibit many interesting properties that can be exploited in a variety of applications such as catalysis and in biomedicine. This review discusses the properties, applications, and syntheses of three magnetic iron oxides – hematite, magnetite, and maghemite – and outlines methods of preparation that allow control over the size, morphology, surface treatment and magnetic properties of their nanoparticles. Some challenges to further development of these materials and methods are also presented.  相似文献   

16.
Iron redox equilibrium, structure and properties were investigated for the 10ZnO-30Fe2O3-60P2O5 (mol%) glasses melted at different temperatures. The structure and valence states of the iron ions in these glasses were investigated using Mössbauer spectroscopy, Raman spectroscopy and differential thermal analysis. Mössbauer spectroscopy indicated that the concentration of Fe2+ ions increased in the 10ZnO-30Fe2O3-60P2O5 (mol%) glass with increasing melting temperature. The Fe2+/(Fe2+ + Fe3+) ratio increased from 0.18 to 0.38 as the melting temperature increased from 1100 to 1300 °C. The measured isomer shifts showed that both Fe2+ and Fe3+ ions are in octahedral coordination. It was shown that the dc conductivity strongly depended on Fe2+/(Fe2+ + Fe3+) ratio in glasses. The dc conductivity increases with the increasing Fe2+ ion content in these glasses. The conductivity arises from the polaron hopping between Fe2+ and Fe3+ ions which suggests that the conduction is electronic in nature in zinc iron phosphate glasses.  相似文献   

17.
The magnetic behaviour of a basalt glass and glass-ceramic was studied by magnetization measurements between 4 and 800 K as a function of a wide range of magnetic fields (H) between 0 and 60 kG. For the as-annealed glass it was found that nearly all the iron ions behaved as paramagnetic ions. In the samples heat-treated at 700 and 900°C, the magnetization (M) values showed three magnetic components: paramagnetic Fe2+ ions, magnetite in a superparamagnetic and in a ferrimagnetic state. This confirmed our previous Mössbauer results. The superparamagnetic behaviour of the fine particles of magnetite was interpreted by Langevin's theory. From the M (H) and M(T) values we evaluated the percentage of each component as a function of temperature, the magnetization values in the saturated states, the mean particle diameter and the particle size distributions.  相似文献   

18.
Orthorhombic Fe5(PO4)4(OH)3·2H2O single crystalline dendritic nanostructures have been synthesized by a facile and reproducible hydrothermal method without the aid of any surfactants. The influences of synthetic parameters, such as reaction time, temperature, the amount of H2O2 solution, pH values, and types of iron precursors, on the crystal structures and morphologies of the resulting products have been investigated. The formation process of Fe5(PO4)4(OH)3·2H2O dendritic nanostructures is time dependent: amorphous FePO4·nH2O nanoparticles are formed firstly, and then Fe5(PO4)4(OH)3·2H2O dendrites are assembled via a crystallization-orientation attachment process, accompanying a color change from yellow to green. The shapes and sizes of Fe5(PO4)4(OH)3·2H2O products can be controlled by adjusting the amount of H2O2 solution, pH values, and types of iron precursors in the reaction system.  相似文献   

19.
The details of Tm3+-doped NaGd(WO4)2 single-crystal growth are discussed, the results of precise investigations of its structural and spectroscopic characteristics, as well as the analysis of cross-relaxation process of Tm3+ ions (3H43F4, 3H63F4) in this crystal are presented. Based on the Judd–Ofelt theory, three intensity parameters, spontaneous emission probabilities, fluorescence branching ratios and fluorescence quantum efficiency from 3H4 and 3F4 levels were refined.  相似文献   

20.
The magnetic and crystal structures of the LaCo0.5Fe0.5O3 perovskite are investigated. It is established that the unit cell of this compound at room temperature is characterized by rhombohedral distortions. As the temperature decreases, the compound undergoes a structural phase transition from the rhombohedral phase to the orthorhombic phase in the temperature range 200–300 K. The LaCo0.5Fe0.5O3 perovskite has an antiferromagnetic structure with the G z spatial orientation of the antiferromagnetic vector. The magnetic properties of the LaCo0.5Fe0.5O3 perovskite are interpreted within a model according to which the ground state of Co3+ ions is a low-spin state and the existence of the weak ferromagnetic component is associated with the exchange interactions between the Fe3+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号