首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With the ultimate goal of devising effective absorbing boundary conditions (ABCs) for general anisotropic media, we investigate the well-posedness and accuracy aspects of local ABCs designed for the transient modeling of the scalar anisotropic wave equation. The ABC analyzed in this paper is the perfectly matched discrete layers (PMDL), a simple variant of perfectly matched layers (PML) that is also equivalent to rational approximation based ABCs. Specifically, we derive the necessary and sufficient condition for the well-posedness of the initial boundary value problem (IBVP) obtained by coupling an interior and a PMDL ABC. The derivation of the reflection coefficient presented in a companion paper (S. Savadatti, M.N. Guddati, J. Comput. Phys., 2010, doi:10.1016/j.jcp.2010.05.018) has shown that PMDL can correctly identify and accurately absorb outgoing waves with opposing signs of group and phase velocities provided the PMDL layer lengths satisfy a certain bound. Utilizing the well-posedness theory developed by Kreiss for general hyperbolic IBVPs, and the well-posedness conditions for ABCs derived by Trefethen and Halpern for isotropic acoustics, we show that this bound on layer lengths also ensures well-posedness. The time discretized form of PMDL is also shown to be theoretically stable and some instability related to finite precision arithmetic is discussed.  相似文献   

2.
With the ultimate goal of devising effective absorbing boundary conditions (ABCs) for general elastic media, we investigate the accuracy aspects of local ABCs designed for untilted non-elliptic anisotropy in the frequency domain (time-harmonic analysis). While simple space–time transformations are available to treat the wavemodes with opposing phase and group velocities present in elliptic anisotropic media, no such transformations are known to exist for the case of non-elliptic anisotropy. In this paper, we use the concept of layer groupings along with an unconventional stretching of the finite element mesh to guarantee the accuracy of local ABCs designed to treat all propagating wavemodes, even those with opposing phase and group velocities. The local ABC used here is the perfectly matched discrete layer (PMDL) which is a simple variant of perfectly matched layers (PMLs) that is also equivalent to rational approximation-based local ABCs (rational ABCs); it inherits the straightforward approximation properties of rational ABCs along with the versatility of PML. The approximation properties of PMDL quantified through its reflection matrix allow us to (a) show that it is impossible to design an accurate PMDL with wavenumber-independent parameters, (b) theoretically demonstrate the ability of wavenumber-dependent parameters to ensure accuracy, and finally (c) design a practical though unconventional stretching of the finite element PMDL mesh that facilitates the implementation of wavenumber-dependent parameters. The validity of this work is demonstrated through a series of numerical experiments.  相似文献   

3.
A particle velocity-strain, finite-difference (FD) method with a perfectly matched layer (PML) absorbing boundary condition is developed for the simulation of elastic wave propagation in multidimensional heterogeneous poroelastic media. Instead of the widely used second-order differential equations, a first-order hyperbolic leap-frog system is obtained from Biot's equations. To achieve a high accuracy, the first-order hyperbolic system is discretized on a staggered grid both in time and space. The perfectly matched layer is used at the computational edge to absorb the outgoing waves. The performance of the PML is investigated by calculating the reflection from the boundary. The numerical method is validated by analytical solutions. This FD algorithm is used to study the interaction of elastic waves with a buried land mine. Three cases are simulated for a mine-like object buried in "sand," in purely dry "sand" and in "mud." The results show that the wave responses are significantly different in these cases. The target can be detected by using acoustic measurements after processing.  相似文献   

4.
High-order Absorbing Boundary Conditions (ABCs), applied on a rectangular artificial computational boundary that truncates an unbounded domain, are constructed for a general two-dimensional linear scalar time-dependent wave equation which represents acoustic wave propagation in anisotropic and subsonically convective media. They are extensions of the construction of Hagstrom, Givoli and Warburton for the isotropic stationary case. These ABCs are local, and involve only low-order derivatives owing to the use of auxiliary variables on the artificial boundary. The accuracy and well-posedness of these ABCs is analyzed. Special attention is given to the issue of mismatch between the directions of phase and group velocities, which is a potential source of concern. Numerical examples for the anisotropic case are presented, using a finite element scheme.  相似文献   

5.
With the goal of minimizing the domain size for molecular dynamics (MD) simulations, we develop a new class of absorbing boundary conditions (ABCs) that mimic the phonon absorption properties of an unbounded exterior. The proposed MD-ABCs are extensions of perfectly matched discrete layers (PMDLs), originally developed as an absorbing boundary condition for continuous wave propagation problems. Called MD-PMDL, this extension carefully targets the absorption of phonons, the high frequency waves, whose propagation properties are completely different from continuous waves. This paper presents the derivation of MD-PMDL for general lattice systems, followed by explicit application to one-dimensional and two-dimensional square lattice systems. The accuracy of MD-PMDL for phonon absorption is proven by analyzing reflection coefficients, and demonstrated through numerical experiments. Unlike existing MD-ABCs, MD-PMDL is local in both space and time and thus more efficient. Based on their favorable properties, it is concluded that MD-PMDL could provide a more effective alternative to existing MD-ABCs.  相似文献   

6.
A 3-D quantum transport solver based on the spectral element method (SEM) and perfectly matched layer (PML) is introduced to solve the 3-D Schr?dinger equation with a tensor effective mass. In this solver, the influence of the environment is replaced with the artificial PML open boundary extended beyond the contact regions of the device. These contact regions are treated as waveguides with known incident waves from waveguide mode solutions. As the transmitted wave function is treated as a total wave, there is no need to decompose it into waveguide modes, thus significantly simplifying the problem in comparison with conventional open boundary conditions. The spectral element method leads to an exponentially improving accuracy with the increase in the polynomial order and sampling points. The PML region can be designed such that less than -100 dB outgoing waves are reflected by this artificial material. The computational efficiency of the SEM solver is demonstrated by comparing the numerical and analytical results from waveguide and plane-wave examples, and its utility is illustrated by multiple-terminal devices and semiconductor nanotube devices.  相似文献   

7.
A 3D quantum transport solver based on the spectral element method (SEM) and perfectly matched layer (PML) is introduced to solve the 3D Schrödinger equation with a tensor effective mass. In this solver, the influence of the environment is replaced with the artificial PML open boundary extended beyond the contact regions of the device. These contact regions are treated as waveguides with known incident waves from waveguide mode solutions. As the transmitted wave function is treated as a total wave, there is no need to decompose it into waveguide modes, thus significantly simplifying the problem in comparison with conventional open boundary conditions. The spectral element method leads to an exponentially improving accuracy with the increase in the polynomial order and sampling points. The PML region can be designed such that less than −100 dB outgoing waves are reflected by this artificial material. The computational efficiency of the SEM solver is demonstrated by comparing the numerical and analytical results from waveguide and plane-wave examples and its utility is illustrated by multiple-terminal devices and semiconductor nanotube devices.  相似文献   

8.
Unconditionally stable complex envelope (CE) perfectly matched layer (PML) absorbing boundary conditions (ABCs) are presented for truncating the scalar wave-equation finite difference time domain (WE-FDTD) grids. The formulations are based on incorporating the alternating direction implicit (ADI) scheme into the CE FDTD implementations of the scalar wave-equation derived in the PML region at the domain boundaries. Numerical example carried out in two dimensional domain shows that the proposed formulations are more accurate than the classical ADI scalar wave equation PML formulations when it is used for modelling band limited electromagnetic applications.  相似文献   

9.
Absorbing boundary conditions (ABCs) are generally required for simulating waves in unbounded domains. As one of those approaches for designing ABCs, perfectly matched layer (PML) has achieved great success for both linear and nonlinear wave equations. In this paper we apply PML to the nonlinear Schrödinger wave equations. The idea involved is stimulated by the good performance of PML for the linear Schrödinger equation with constant potentials, together with the time-transverse invariant property held by the nonlinear Schrödinger wave equations. Numerical tests demonstrate the effectiveness of our PML approach for both nonlinear Schrödinger equations and some Schrödinger-coupled systems in each spatial dimension.  相似文献   

10.
A new 3D code for electromagnetic induction tomography with intended applications to environmental imaging problems has been developed. The approach consists of calculating the fields within a volume using an implicit finite-difference frequency-domain formulation. The volume is terminated by an anisotropic perfectly matched layer region that simulates an infinite domain by absorbing outgoing waves. Extensive validation of this code has been done using analytical and semianalytical results from other codes, and some of those results are presented in this paper. The new code is written in Fortran 90 and is designed to be easily parallelized. Finally, an adjoint field method of data inversion, developed in parallel for solving the fully nonlinear inverse problem for electrical conductivity imaging (e.g., for mapping underground conducting plumes), uses this code to provide solvers for both forward and adjoint fields. Results obtained from this inversion method for high-contrast media are encouraging and provide a significant improvement over those obtained from linearized inversion methods.  相似文献   

11.
Fabric dependence of quasi-waves in anisotropic porous media   总被引:1,自引:0,他引:1  
Assessment of bone loss and osteoporosis by ultrasound systems is based on the speed of sound and broadband ultrasound attenuation of a single wave. However, the existence of a second wave in cancellous bone has been reported and its existence is an unequivocal signature of poroelastic media. To account for the fact that ultrasound is sensitive to microarchitecture as well as bone mineral density (BMD), a fabric-dependent anisotropic poroelastic wave propagation theory was recently developed for pure wave modes propagating along a plane of symmetry in an anisotropic medium. Key to this development was the inclusion of the fabric tensor--a quantitative stereological measure of the degree of structural anisotropy of bone--into the linear poroelasticity theory. In the present study, this framework is extended to the propagation of mixed wave modes along an arbitrary direction in anisotropic porous media called quasi-waves. It was found that differences between phase and group velocities are due to the anisotropy of the bone microarchitecture, and that the experimental wave velocities are more accurately predicted by the poroelastic model when the fabric tensor variable is taken into account. This poroelastic wave propagation theory represents an alternative for bone quality assessment beyond BMD.  相似文献   

12.
A nodal discontinuous Galerkin finite element method (DG-FEM) to solve the linear and nonlinear elastic wave equation in heterogeneous media with arbitrary high order accuracy in space on unstructured triangular or quadrilateral meshes is presented. This DG-FEM method combines the geometrical flexibility of the finite element method, and the high parallelization potentiality and strongly nonlinear wave phenomena simulation capability of the finite volume method, required for nonlinear elastodynamics simulations. In order to facilitate the implementation based on a numerical scheme developed for electromagnetic applications, the equations of nonlinear elastodynamics have been written in a conservative form. The adopted formalism allows the introduction of different kinds of elastic nonlinearities, such as the classical quadratic and cubic nonlinearities, or the quadratic hysteretic nonlinearities. Absorbing layers perfectly matched to the calculation domain of the nearly perfectly matched layers type have been introduced to simulate, when needed, semi-infinite or infinite media. The developed DG-FEM scheme has been verified by means of a comparison with analytical solutions and numerical results already published in the literature for simple geometrical configurations: Lamb's problem and plane wave nonlinear propagation.  相似文献   

13.
Characteristics of the bulk electromagnetic waves in teraHertz frequency region are examined in a left-handed superlattice (SL) which consists of alternating layers of nonmagnetic semiconductor and nonconducting antiferromagnetic materials. General problem on the sign of the refractive index for anisotropic media is considered. It is shown that the phase refraction index is always positive while the group refractive index can be negative when some general conditions are fulfilled. Effective permittivity and permeability tensors of the SL are derived for perpendicular and parallel orientation of the magnetic anisotropy axis with respect to the plane of the layers. Problem of anomalous refraction for transverse electric and transverse magnetic-type polarized waves is examined in such media. Analytical expressions for both the phase and group refractive indices are obtained for various propagated modes. It is shown that, in general, three different types of the refracted waves with different relative orientation of the phase and group velocity vectors are possible in left-handed media. Unusual peculiarities of the backward modes corresponding to the coupled magnon–plasmon polaritons are considered. It is shown, in particular, that the number of the backward modes depends on the free charge carrier's density in semiconductor layers, variation of which allows to create different frequency regions for the wave propagation.  相似文献   

14.
有耗介质空间完全匹配层吸收边界条件及其应用   总被引:2,自引:0,他引:2       下载免费PDF全文
 针对Gedney提出的完全匹配层(PML)无法用于有耗各向同性计算域的截断及其对倏逝波的衰减不理想等问题,提出了一种扩展方法。扩展的PML的主要思想是在各向异性的PML中引入与有耗介质空间相一致的复介电常数和复磁导率,使之可以与有耗介质计算域相匹配。通过给PML的张量介电常数、张量磁导率增加衰减因子以加速倏逝波的衰减。构造了PML吸收效果验证模型,数值结果证明了扩展的PML在处理有耗介质计算域截断问题中的有效性。利用该吸收边界条件,采用时域有限差分法计算了电磁脉冲作用下地面铺设电缆的电磁脉冲响应,计算结果和试验结果取得了较好的一致。  相似文献   

15.
陈明阳  于荣金 《光学学报》2002,22(4):10-412
根据色散媒质的性质及电磁波在不同媒质交界面上的反射的机理,证明并分析了在理想匹配层吸收边界中引入色散可实现有效吸收入射到吸收边界上的电磁波,从而达到减少时域有限差分法计算区域和计算误差的目的。  相似文献   

16.
提出一种等效的双重弹性波波场分离数值模拟方法,用于模拟纯纵波和纯横波分离模式的质点振动速度、位移以及散度场和旋度场,并将该方法应用于全弹性波波动方程数值模拟中.同时,详细推导双重弹性波波场分离波动方程的高阶交错网格有限差分数值计算公式及其稳定性条件、数值频散关系和完全匹配层(PML)吸收边界条件.理论分析和数值计算均表明,该方法可以实现高精度双重弹性波波场分离数值模拟,且纯纵波和纯横波得到完全分离,边界吸收效果较好.与前人工作相比,存储量和计算时间均得到有效改善,数值计算结果进一步验证了该方法的优越性.  相似文献   

17.
We present a numerical method for the analysis of translationally invariant systems with anisotropic and dispersive electric and magnetic properties. This material model enables us to calculate the mode structure of photonic devices such as photonic crystal fibres (PCF) containing inclusions with anisotropic, conducting, magnetic, or negative index materials. The method is based on the popular plane wave (PWM) discretisation scheme applied to the generalised vectorial transmission line equations. The analysis is focused on the calculation of radiation losses. For this purpose we consider a uniaxial perfectly matched layer (UPML) termination of the otherwise periodic system. We asses the accuracy of the method and the properties of spurious modes created inside the UPML.  相似文献   

18.
Modeling the head-related transfer function (HRTF) is a key to many applications in spatial audio. To understand and predict the effects of head geometry and the surrounding environment on the HRTF, a three-dimensional finite-difference time domain model (3D FDTD) has been developed to simulate acoustic wave interaction with a human head. A perfectly matched layer (PML) is used to absorb outgoing waves at the truncated boundary of an unbounded medium. An external source is utilized to reduce the computational domain size through the scattered-field/total-field formulation. This numerical model has been validated by analytical solutions for a spherical head model. The 3D FDTD code is then used as a computational tool to predict the HRTF for various scenarios. In particular, a simplified spherical head model is compared to a realistic head model up to about 7 kHz. The HRTF is also computed for a realistic head model in the presence of a wall. It is demonstrated that this 3D FDTD model can be a useful tool for spatial audio applications.  相似文献   

19.
 基于磁化等离子体本构方程,提出了一种截断各向异性色散介质的修正的各向异性完全匹配层(M-UPML)吸收边界算法。通过等效相对介电常数,将UPML推广到截断各向异性等离子体介质的情形,并推导了其时域有限差分方法(FDTD)迭代式。用该方法计算了半空间磁化与非磁化等离子体的反射系数,计算结果与解析解相一致,表明该吸收边界具有良好的吸收效果。  相似文献   

20.
Based on the nearly perfectly matched layer (NPML) theory, a finite-difference time-domain (FDTD) absorbing boundary condition (ABC) is presented for truncating three-dimensional (3-D) anisotropic medium. In the proposed technique, the complex coordinate stretching in the NPML scheme and the spatial interpolation method are employed. The associated ABC formulations have the advantage of simplicity in the FDTD implementations. The radiation fields of an electric dipole in anisotropic media are calculated using the presented ABC. The results are numerically verified by the comparison with the reference solutions. Furthermore, in order to clearly show the effective absorbing performance of the proposed method, the reflection coefficient and time-dependent relative error for different layers NPML absorbing boundary are also simulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号