共查询到20条相似文献,搜索用时 15 毫秒
1.
Stefan Lautenschlaeger Sebastian Eisermann Michael N. Hofmann Udo Roemer Melanie Pinnisch Andreas Laufer Bruno K. Meyer Holger von Wenckstern Alexander Lajn Florian Schmidt Marius Grundmann Juergen Blaesing Alois Krost 《Journal of Crystal Growth》2010,312(14):2078-2082
We report on the growth of non-polar a-plane ZnO by CVD on r-plane-sapphire-wafers, a-plane GaN-templates and a-plane ZnO single-crystal substrates. Only the homoepitaxial growth approach leads to a Frank–van-der–Merwe growth mode, as shown by atomic force microscopy. The X-ray-diffraction spectra of the homoepitaxial thin films mirror the excellent crystalline quality of the ZnO substrate. The morphological and the structural quality of the homoepitaxial films is comparable to the best results for the growth on c-plane ZnO-substrates. The impurity incorporation, especially of group III elements, seems to be reduced when growing on the non-polar a-plane surface compared to the c-plane films as demonstrated by secondary ion mass spectrometry (SIMS). Optical properties have been investigated using low temperature photoluminescence measurements. We employed capacitance–voltage measurements (C–V) to measure the background carrier density and its profile from substrate/film interface throughout the film to the surface. In thermal admittance spectroscopy (TAS) specific traps could be distinguished, and their thermal activation energies and capture cross sections could be determined. 相似文献
2.
Jie Zhao Lizhong Hu Zhaoyang Wang Zhijun Wang Heqiu Zhang Yu Zhao Xiuping Liang 《Journal of Crystal Growth》2005,280(3-4):455-461
Epitaxial ZnO thin films have been grown on Si(1 1 1) substrates at temperatures between 550 and 700 °C with an oxygen pressure of 60 Pa by pulsed laser deposition (PLD). A ZnO thin film deposited at 500 °C in no-oxygen ambient was used as a buffer layer for the ZnO growth. In situ reflection high-energy electron diffraction (RHEED) observations show that ZnO thin films directly deposited on Si are of a polycrystalline structure, and the crystallinity is deteriorated with an increase of substrate temperature as reflected by the evolution of RHEED patterns from the mixture of spots and rings to single rings. In contrast, the ZnO films grown on a homo-buffer layer exhibit aligned spotty patterns indicating an epitaxial growth. Among the ZnO thin films with a buffer layer, the film grown at 650 °C shows the best structural quality and the strongest ultraviolet (UV) emission with a full-width at half-maximum (FWHM) of 86 meV. It is found that the ZnO film with a buffer layer has better crystallinity than the film without the buffer layer at the same substrate temperature, while the film without the buffer layer shows a more intense UV emission. Possible reasons and preventive methods are suggested to obtain highly optical quality films. 相似文献
3.
ZnO/MgF2/ZnO sandwich structure films were fabricated. The effects of a buffer layer on structure and optical properties of ZnO films were investigated by X-ray diffraction, photoluminescence, optical transmittance and absorption measurements. Measurement results showed that the buffer layer had the effects of improving the quality of ZnO films and releasing the residual stresses in the films. The near-band edge emissions of ZnO films deposited on the MgF2 buffer layer were significantly enhanced compared with those deposited on bare substrate due to the smaller lattice mismatch between MgF2 and ZnO than that between fused silica and ZnO. 相似文献
4.
Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition 总被引:2,自引:0,他引:2
Cuprous oxide (Cu2O) thin films were grown epitaxially on c-axis-oriented polycrystalline zinc oxide (ZnO) thin films by low-pressure metal organic chemical vapor deposition (MOCVD) from Copper(II) hexafluoroacetylacetonate [Cu(C5HF6O2)2] at various substrate temperatures, between 250 and 400 °C, and pressures, between 0.6 and 2.1 Torr. Polycrystalline thin films of Cu2O grow as single phase with [1 1 0] axis aligned perpendicular to the ZnO surface and with in-plane rotational alignment due to (2 2 0)Cu2O(0 0 0 2)ZnO; [0 0 1]Cu2O[1 2¯ 1 0]ZnO epitaxy. The resulting interface is rectifying and may be suitable for oxide-based p–n junction solar cells or diodes. 相似文献
5.
J.H. Yu J.H. Kim D.S. Park T.S. Kim T.S. Jeong C.J. Youn K.J. Hong 《Journal of Crystal Growth》2010,312(10):1683-1686
Wide band-gap BeZnO layers were grown on Al2O3 (0 0 0 1) substrate using radio-frequency magnetron co-sputtering. The rate of BexZn1−xO crystallized as a hexagonal structure was x=0.2. From the X-ray photoelectron spectroscopy measurement, the O–Zn bonds relating the crystal structure and the Be–O bonds related to the deviation of the stoichiometry in the BeZnO layer were caught at 530.4 and 531.7 eV in the O 1s spectrum, respectively. Thus, the observance on the Be 1s peak of 113.2 eV associated with the bonding Be–O indicates that the sputtered Be atoms are substituted for the host-lattice site in ZnO. This Be–O bonding shows a relatively low intense and broadening spectrum caused by large fluctuation of Be content in the BeZnO layer. From the photoluminescence and transmittance measurement, the free exciton and the neutral donor-bound exciton (D0, X) emissions were observed at 3.7692 and 3.7313 eV, respectively, and an average transmittance rate over 95% was achieved in a wide ultraviolet (UV)–visible region. Also, the binding energy for the (D0, X) emission was extracted to be 37.9 meV. Through the wide band-gap material BeZnO, we may open some possibilities for fabricating a ZnO-based UV light-emitting diode to be utilized as a barrier layer comprised of the ZnO/BeZnO quantum well structure and/or an UV light emitting material itself. 相似文献
6.
Cadmium telluride (CdTe) thin films were prepared by the closed-space sublimation (CSS) technique, using CdTe powder as evaporant onto substrates of water-white glass. In the next step, the annealed films at 450 °C for 30 min were dipped in AgNO3–H2O solution at room temperature. These films were again annealed at 450 °C for 1 h to obtain silver-doped samples. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electrically i.e. DC electrical resistivity as well as photo resistivity by van der Pauw method at room temperature, dark conductivity, activation energy analysis as a function of temperature by two-probe method under vacuum, and spectrophotometry. The electron microprobe analyzer (EMPA) results showed an increase of Ag content composition in the samples by increasing the immersion time of films in solution. The Hall measurements indicated the increase in mobility and carrier concentrations of CdTe films by doping of Ag. A significant change in the shape and size of the CdTe grains were observed. 相似文献
7.
8.
Waleed E. Mahmoud 《Journal of Crystal Growth》2010,312(21):3075-3079
Single crystalline Ce-doped ZnO hexagonal nanoplatelets are successfully synthesized. Zinc acetate, cerium nitrate, potassium hydroxide and poly vinyl alcohol were mixed together and transferred to a 100 mL Teflon-lined stainless steel autoclave kept at 150 °C for 24 h. The obtained precipitant is calcined at 600 °C. The morphology and microstructure were determined by field emission scanning electron microscopy (FE-SEM), X-ray diffraction transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy. The investigation confirmed that the products were of the wurtzite structure of ZnO. The doped hexagonal nanoplatelets have edge length 25 nm and thickness 11 nm. EDX result showed that the amount of Ce in the product is about 15%. Photoluminescence of these doped hexagonal nanoplatelets exhibits a blue shift and weak ultraviolet (UV) emission peak, compared with pure ZnO, which may be induced by Ce-doping. The growth mechanism of the doped hexagonal nanoplatelets was also discussed. 相似文献
9.
We report the liquid-phase epitaxial growth of Zn3P2 on InP (1 0 0) substrates by conventional horizontal sliding boat system using 100% In solvent. Different cooling rates of 0.2–1.0 °C/min have been adopted and the influence of supercooling on the properties of the grown epilayers is analyzed. The crystal structure and quality of the grown epilayers have been studied by X-ray diffraction and high-resolution X-ray rocking measurements, which revealed a good lattice matching between the epilayers and the substrate. The supercooling-induced morphologies and composition of the epilayers were studied by scanning electron microscopy and energy dispersive X-ray analysis. The growth rate has been calculated and found that there exists a linear dependence between the growth rate and the cooling rate. Hall measurements showed that the grown layers are unintentionally doped p-type with a carrier mobility as high as 450 cm2/V s and a carrier concentration of 2.81×1018 cm−3 for the layers grown from 6 °C supercooled melt from the cooling rate of 0.4 °C/min. 相似文献
10.
Chao-Yang Tsao Patrick Campbell Dengyuan Song Martin A. Green 《Journal of Crystal Growth》2010,312(19):2647-2655
To improve the properties of polycrystalline Ge thin films, which are a candidate material for the bottom cells of low cost monolithic tandem solar cells, ∼300 nm in situ hydrogenated Ge (Ge:H) thin films were deposited on silicon nitride coated glass by radio-frequency magnetron sputtering. The films were sputtered in a mixture of 15 sccm argon and 10 sccm hydrogen at a variety of low substrate temperatures (Ts)≤450 °C. Structural and optical properties of the Ge:H thin films were measured and compared to those of non-hydrogenated Ge thin films deduced in our previous work. Raman and X-ray diffraction spectra revealed a structural evolution from amorphous to crystalline phase with increase in Ts. It is found that the introduction of hydrogen gas benefits the structural properties of the polycrystalline Ge film, sputtered at 450 °C, although the onset crystallization temperature is ∼90 °C higher than in those sputtered without hydrogen. Compared with non-hydrogenated Ge thin films, hydrogen incorporated in the films leads to broadened band gaps of the films sputtered at different Ts. 相似文献
11.
SnO2 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates at different substrate temperatures (500–800 °C) by metalorganic chemical vapor deposition (MOCVD). Structural, electrical and optical properties of the films have been investigated. The films deposited at 500 and 600 °C are epitaxial SnO2 films with orthorhombic columbite structure, and the HRTEM analysis shows a clear epitaxial relationship of columbite SnO2(1 0 0)||YSZ(1 0 0). The films deposited at 700 and 800 °C have mixed-phase structures of rutile and columbite SnO2. The carrier concentration of the films is in the range from 1.15×1019 to 2.68×1019 cm−3, and the resistivity is from 2.48×10−2 to 1.16×10−2 Ω cm. The absolute average transmittance of the films in the visible range exceeds 90%. The band gap of the obtained SnO2 films is about 3.75–3.87 eV. 相似文献
12.
This paper investigates preparation of CaSeS thin films using hot-wall epitaxy. These films can be grown epitaxially on cleaved BaF2(1 1 1) at a substrate temperature of 873 K by tailoring the VI/II flux ratio vaporized from Ca and SeS resources. The optical absorption edge of these films thus tailored can be observed clearly, shifting toward higher photon energy with increasing S content. In particular, the energy band gap of CaSe0.66S0.34, capable of lattice-matching to InP was found to be 4.69 eV, producing considerably large band gap difference of 3.34 eV between the CaSe0.66S0.34 and InP. 相似文献
13.
S. Pereira M. R. Correia T. Monteiro E. Pereira M. R. Soares E. Alves 《Journal of Crystal Growth》2001,230(3-4):448-453
We studied the structural and optical properties of a set of nominally undoped epitaxial single layers of InxGa1−xN (0<x0.2) grown by MOCVD on top of GaN/Al2O3 substrates. A comparison of composition values obtained for thin (tens of nanometers) and thick (≈0.5 μm) layers by different analytical methods was performed. It is shown that the indium mole fraction determined by X-ray diffraction, measuring only one lattice parameter strongly depend on the assumptions made about strain, usually full relaxation or pseudomorphic growth. The results attained under such approximations are compared with the value of indium content derived from Rutherford backscattering spectrometry (RBS). It is shown that significant inaccuracies may arise when strain in InxGa1−xN/GaN heterostructures is not properly taken into account. Interpretation of these findings, together with the different criteria used to define the optical bandgap of InxGa1−xN layers, may explain the wide dispersion of bowing parameters found in the literature. Our results indicate a linear, Eg(x)=3.42−3.86x eV (x0.2), “anomalous” dependence of the optical bandgap at room temperature with In content for InxGa1−xN single layers. 相似文献
14.
Bi3.25Na2.25Ti3O12 thin films were prepared on p-Si(1 1 1) substrate by a metalorganic solution decomposition (MOSD) method. The structural characteristic and crystallization of the films were examined by X-ray diffraction. The current–voltage characteristic shows ohmic conductivity in the lower voltage range and space-charge-limited conductivity in the higher voltage range. The dielectric constant is 53 at a frequency of 100 kHz at room temperature and the dissipation factor exists at a minimal value of 0.02 at a frequency of 200 kHz. The retention time estimated by measuring capacitance is about 106 s. Nonhysteretic C–V curves at various frequencies were also collected. 相似文献
15.
High intense UV-luminescence of nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films 总被引:4,自引:0,他引:4
X. T. Zhang Y. C. Liu Z. Z. Zhi J. Y. Zhang Y. M. Lu W. Xu D. Z. Shen G. Z. Zhong X. W. Fan X. G. Kong 《Journal of Crystal Growth》2002,240(3-4):463-466
High quality zinc oxide (ZnO) films were obtained by thermal oxidation of high quality ZnS films. The ZnS films were deposited on a Si substrate by a low-pressure metalorganic chemical vapor deposition technique. X-ray diffraction spectra indicate that high quality ZnO films possessing a polycrystalline hexagonal wurtzite structure with preferred orientation of (0 0 2) were obtained. A fourth order LO Raman scattering was observed in the films. In photoluminescence (PL) measurements, a strong PL with a full-width at half-maximum of 10 nm around 380 nm was obtained for the samples annealed at 900°C at room temperature. The maximum PL intensity ratio of the UV emission to the deep-level emission is 28 at room temperature, providing evidence of the high quality of the nanocrystalline ZnO films. 相似文献
16.
J.S. Liu C.X. Shan S.P. Wang F. Sun B. Yao D.Z. Shen 《Journal of Crystal Growth》2010,312(20):2861-2864
Single-crystalline ZnO films have been grown on a-plane sapphire in plasma assisted molecular beam epitaxy by introducing a high-temperature ZnO buffer layer. The residual electron concentration of the films can be lowered to 1.5×1016 cm−3, comparable with the best value ever reported for ZnO films grown on a rare and costly substrate of ScAlMgO4. A 3×3 reconstruction has been observed on the films grown in this route, which reveals that the films have very smooth surface. X-ray phi-scan spectrum of the films shows six peaks with 60° intervals, and two-dimensional X-ray diffraction datum indicates the single-crystalline nature of the films. Low temperature photoluminescence spectrum of the films shows a dominant free exciton emission and five phonon replicas, confirming the high quality of the films. 相似文献
17.
ZnO films on Al2O3 substrate were grown by using a pulsed laser deposition method. Through photoluminescence (PL) and X-ray diffraction (XRD) measurements, the optimum growth conditions for the ZnO growth were calculated. The results of the XRD measurement indicate that ZnO film was strongly oriented to the c-axis of hexagonal structure and epitaxially crystallized under constraints created by the substrate. The full-width half-maximum for a theta curve of the (0 0 0 2) peak was 0.201°. Also, from the PL measurement, the grown ZnO film was observed to be a free exciton, which indicates a high quality of epilayer. The Hall mobility and carrier density of the ZnO film at 293 K were estimated to be 299 cm2/V sec and , respectively. The absorption spectra revealed that the temperature dependence of the optical band gap on the ZnO films was − . 相似文献
18.
N. Gopalakrishnan L. Balakrishnan K. Latha S. Gowrishankar 《Crystal Research and Technology》2011,46(4):361-367
Transparent Zinc Oxide (ZnO) thin films have been grown on Si (100) and Sapphire (0001) substrates by RF magnetron sputtering for different growth time intervals (10, 30 and 60 min) to study the substrate and thickness effects. All the films have been grown at a substrate temperature of 450 °C. It has been found that the average growth rate on Si (100) substrate (8.6 nm/min) is higher than that on Sapphire (0001) substrate (2.6 nm/min) in an identical growth condition which clearly shows the virtual role of substrates. The lower growth rate on Sapphire (0001) suggests that the increasingly ordered and uniform growth due to less lattice mismatch. The grown films have been characterized by X‐ray diffraction (XRD), Reflectance, Photoluminescence (PL) and Hall measurements. The XRD result (FWHM) reveals that for lower growth time, the films grown on Si (100) is better than on Sapphire (0001). Conversely, for higher growth time, the films grown on Sapphire (0001) is better than on Si (100). The variation of strain behavior due to thickness on both substrates has been justified by UV‐Vis reflectance, photoluminescence and Hall effect measurements. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
19.
B. S. Li Y. C. Liu Z. Z. Zhi D. Z. Shen Y. M. Lu J. Y. Zhang X. W. Fan 《Journal of Crystal Growth》2002,240(3-4):479-483
High-quality ZnO thin films have been grown on a Si(1 0 0) substrate by plasma-enhanced chemical vapor deposition (PECVD) using a zinc organic source (Zn(C2H5)2) and carbon dioxide (CO2) gas mixtures at a temperature of 180°C. A strong free exciton emission with a weak defect-band emission in the visible region is observed. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption peak in the absorption spectra, are closely related to the gas flow rate ratio of Zn(C2H5)2 to CO2. Full-widths at half-maximum of the free exciton emission as narrow as 93.4 meV have been achieved. Based on the temperature dependence of the PL spectra from 83 to 383 K, the exciton binding energy and the transition energy of free excitons at 0 K were estimated to be 59.4 meV and 3.36 eV, respectively. 相似文献