首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
姜宗林 《计算物理》1990,7(3):275-282
在这篇文章里,我们提出了一个二阶隐式迎风的增量迭代法,用以离散BFC(Body-Fitted Coordinates)坐标变换下的Navier-Stokes方程。使用这种算法结合Lomax两层代数湍流模型数值求解了S形进气道内的可压缩湍流。数值实验表明:计算过程具有较好的稳定性和收敛性。二维Poissuil流动和Couette流动的计算结果和精确解符合良好,两种壁面曲率不同的S形进气道内流场的计算结果也是令人满意的。  相似文献   

2.
The velocity fields obtained by PIV (Particle Image Velocimetry) in supersonic flows are not sufficient to determine the integral characteristics of the flow. Additional data, for example, on pressure can be obtained from the solution of the Navier?Stokes equations. For incompressible flows, the solution of these equations is not too complicated. However, for supersonic flows, the need to take into account the flow density and the increasing number of experimental errors make it more difficult. This paper proposes a new method for calculating density and pressure from PIV data on the basis of the continuity equation. This method is robust and easy to implement for compressible flows.  相似文献   

3.
A pressure based, iterative finite volume method is developed for calculation of compressible, viscous, heat conductive gas flows at all speeds. The method does not need the use of under-relaxation coefficient in order to ensure a convergence of the iterative process. The method is derived from a general form of system of equations describing the motion of compressible, viscous gas. An emphasis is done on the calculation of gaseous microfluidic problems. A fast transient process of gas wave propagation in a two-dimensional microchannel is used as a benchmark problem. The results obtained by using the new method are compared with the numerical solution obtained by using SIMPLE (iterative) and PISO (non-iterative) methods. It is shown that the new iterative method is faster than SIMPLE. For the considered problem the new method is slightly faster than PISO as well. Calculated are also some typical microfluidic subsonic and supersonic flows, and the Rayleigh–Bénard convection of a rarefied gas in continuum limit. The numerical results are compared with other analytical and numerical solutions.  相似文献   

4.
In this paper, we present a fourth-order in space and time block-structured adaptive mesh refinement algorithm for the compressible multicomponent reacting Navier–Stokes equations. The algorithm uses a finite-volume approach that incorporates a fourth-order discretisation of the convective terms. The time-stepping algorithm is based on a multi-level spectral deferred corrections method that enables explicit treatment of advection and diffusion coupled with an implicit treatment of reactions. The temporal scheme is embedded in a block-structured adaptive mesh refinement algorithm that includes subcycling in time with spectral deferred correction sweeps applied on levels. Here we present the details of the multi-level scheme paying particular attention to the treatment of coarse–fine boundaries required to maintain fourth-order accuracy in time. We then demonstrate the convergence properties of the algorithm on several test cases including both non-reacting and reacting flows. Finally we present simulations of a vitiated dimethyl ether jet in 2D and a turbulent hydrogen jet in 3D, both with detailed kinetics and transport.  相似文献   

5.
We propose a new model and a solution method for two-phase compressible flows. The model involves six equations obtained from conservation principles applied to each phase, completed by a seventh equation for the evolution of the volume fraction. This equation is necessary to close the overall system. The model is valid for fluid mixtures, as well as for pure fluids. The system of partial differential equations is hyperbolic. Hyperbolicity is obtained because each phase is considered to be compressible. Two difficulties arise for the solution: one of the equations is written in non-conservative form; non-conservative terms exist in the momentum and energy equations. We propose robust and accurate discretisation of these terms. The method solves the same system at each mesh point with the same algorithm. It allows the simulation of interface problems between pure fluids as well as multiphase mixtures. Several test cases where fluids have compressible behavior are shown as well as some other test problems where one of the phases is incompressible. The method provides reliable results, is able to compute strong shock waves, and deals with complex equations of state.  相似文献   

6.
The steady incompressible Navier–Stokes equations in three dimensions are solved for neutral and stably stratified flow past three-dimensional obstacles of increasing spanwise width. The continuous equations are approximated using a finite volume discretisation on staggered grids with a flux-limited monotonic scheme for the advective terms. The discrete equations which arise are solved using a nonlinear multigrid algorithm with up to four grid levels using the SIMPLE pressure correction method as smoother. When at its most effective the multigrid algorithm is demonstrated to yield convergence rates which are independent of the grid density. However, it is found that the asymptotic convergence rate depends on the choice of the limiter used for the advective terms of the density equation, and some commonly used schemes are investigated. The variation with obstacle width of the influence of the stratification on the flow field is described and the results of the three-dimensional computations are compared with those of the corresponding computation of flow over a two-dimensional obstacle (of effectively infinite width). Also given are the results of time-dependent computations for three-dimensional flows under conditions of strong static stability when lee-wave propagation is present and the multigrid algorithm is used to compute the flow at each time step.  相似文献   

7.
The fluid dynamic equations are discretized by a high-order spectral volume (SV) method on unstructured tetrahedral grids. We solve the steady state equations by advancing in time using a backward Euler (BE) scheme. To avoid the inversion of a large matrix we approximate BE by an implicit lower–upper symmetric Gauss–Seidel (LU-SGS) algorithm. The implicit method addresses the stiffness in the discrete Navier–Stokes equations associated with stretched meshes. The LU-SGS algorithm is then used as a smoother for a p-multigrid approach. A Von Neumann stability analysis is applied to the two-dimensional linear advection equation to determine its damping properties. The implicit LU-SGS scheme is used to solve the two-dimensional (2D) compressible laminar Navier–Stokes equations. We compute the solution of a laminar external flow over a cylinder and around an airfoil at low Mach number. We compare the convergence rates with explicit Runge–Kutta (E-RK) schemes employed as a smoother. The effects of the cell aspect ratio and the low Mach number on the convergence are investigated. With the p-multigrid method and the implicit smoother the computational time can be reduced by a factor of up to 5–10 compared with a well tuned E-RK scheme.  相似文献   

8.
A fast implicit Newton–Krylov finite volume algorithm has been developed for high-order unstructured steady-state computation of inviscid compressible flows. The matrix-free generalized minimal residual (GMRES) algorithm is used for solving the linear system arising from implicit discretization of the governing equations, avoiding expensive and complex explicit computation of the high-order Jacobian matrix. The solution process has been divided into two phases: start-up and Newton iterations. In the start-up phase an approximate solution with the general characteristics of the steady-state flow is computed by using a defect correction procedure. At the end of the start-up phase, the linearization of the flow field is accurate enough for steady-state solution, and a quasi-Newton method is used, with an infinite time step and very rapid convergence. A proper limiter implementation for efficient convergence of the high-order discretization is discussed and a new formula for limiting the high-order terms of the reconstruction polynomial is introduced. The accuracy, fast convergence and robustness of the proposed high-order unstructured Newton–Krylov solver for different speed regimes is demonstrated for the second, third and fourth-order discretization. The possibility of reducing computational cost required for a given level of accuracy by using high-order discretization is examined.  相似文献   

9.
唐维军  蒋浪  程军波 《计算物理》2014,31(3):292-306
对基于质量分数的Mie-Gruneisen状态方程多流体组份模型提出了新的数值方法.该模型保持混合流体的质量、动量、和能量守恒,保持各组份分质量守恒,在多流体组份界面处保持压力和速度一致.该模型是拟守恒型方程系统.对该模型系统的离散采用波传播算法.与直接对模型中所有守恒方程采用相同算法不同的是,在处理分介质质量守恒方程时,对波传播算法进行了修正,使之满足质量分数保极值原理.而不作修改的算法则不能保证质量分数在[0,1]范围.数值实验验证了该方法有效.  相似文献   

10.
Ghost Fluid方法与双介质可压缩流动计算   总被引:1,自引:1,他引:0  
张镭  袁礼 《计算物理》2003,20(6):503-508
应用带有Isobaric修正的GhostFluid方法配合LevelSet方法计算可压缩双介质无粘流动.该方法可以消除计算流体界面时所产生的数值跳动和耗散,且编程上比界面跟踪法简单.应用WENO格式数值求解欧拉方程和LevelSet方程,对由刚性气体状态方程所支配的一二维双介质流动进行数值计算,得到了分辨率较高的计算结果.  相似文献   

11.
A new finite volume-based numerical algorithm for predicting incompressible and compressible multi-phase flow phenomena is presented. The technique is equally applicable in the subsonic, transonic, and supersonic regimes. The method is formulated on a non-orthogonal coordinate system in collocated primitive variables. Pressure is selected as a dependent variable in preference to density because changes in pressure are significant at all speeds as opposed to variations in density, which become very small at low Mach numbers. The pressure equation is derived from overall mass conservation. The performance of the new method is assessed by solving the following two-dimensional two-phase flow problems: (i) incompressible turbulent bubbly flow in a pipe, (ii) incompressible turbulent air–particle flow in a pipe, (iii) compressible dilute gas–solid flow over a flat plate, and (iv) compressible dusty flow in a converging diverging nozzle. Predictions are shown to be in excellent agreement with published numerical and/or experimental data.  相似文献   

12.
N-S方程隐式分区并行计算   总被引:4,自引:0,他引:4  
邹辉  李劲菁  吴子牛 《计算物理》2001,18(3):199-205
将Wu Z N和Zou H提出的一套适合三点块三对角隐式格式的定常和非定常可压无粘流的覆盖分区并行计算方法推广到N-S方程的计算.在二维定常亚音速、跨音速和非定常情况下都得到了较好的绝对并行效率.  相似文献   

13.
二维多介质可压缩流的RKDG有限元方法   总被引:1,自引:0,他引:1  
陈荣三  蔚喜军 《计算物理》2006,23(6):699-705
应用RKDG(Runge-Kutta Discontinuous Galerkin)有限元方法、Level Set方法和Ghost Fluid方法数值模拟二维多介质可压缩流,其中Euler方程组、Level Set方程和重新初始化方程的空间离散采用DG(Discontinuous Galerkin)有限元方法,时间离散采用Runge-Kutta方法.对二维的气-气和气-液两相流进行了数值计算,得到了分辨率较高的计算结果.  相似文献   

14.
Numerical approximation of the five-equation two-phase flow of Kapila et al. [A.K. Kapila, R. Menikoff, J.B. Bdzil, S.F. Son, D.S. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Physics of Fluids 13(10) (2001) 3002–3024] is examined. This model has shown excellent capabilities for the numerical resolution of interfaces separating compressible fluids as well as wave propagation in compressible mixtures [A. Murrone, H. Guillard, A five equation reduced model for compressible two phase flow problems, Journal of Computational Physics 202(2) (2005) 664–698; R. Abgrall, V. Perrier, Asymptotic expansion of a multiscale numerical scheme for compressible multiphase flows, SIAM Journal of Multiscale and Modeling and Simulation (5) (2006) 84–115; F. Petitpas, E. Franquet, R. Saurel, O. Le Metayer, A relaxation-projection method for compressible flows. Part II. The artificial heat exchange for multiphase shocks, Journal of Computational Physics 225(2) (2007) 2214–2248]. However, its numerical approximation poses some serious difficulties. Among them, the non-monotonic behavior of the sound speed causes inaccuracies in wave’s transmission across interfaces. Moreover, volume fraction variation across acoustic waves results in difficulties for the Riemann problem resolution, and in particular for the derivation of approximate solvers. Volume fraction positivity in the presence of shocks or strong expansion waves is another issue resulting in lack of robustness. To circumvent these difficulties, the pressure equilibrium assumption is relaxed and a pressure non-equilibrium model is developed. It results in a single velocity, non-conservative hyperbolic model with two energy equations involving relaxation terms. It fulfills the equation of state and energy conservation on both sides of interfaces and guarantees correct transmission of shocks across them. This formulation considerably simplifies numerical resolution. Following a strategy developed previously for another flow model [R. Saurel, R. Abgrall, A multiphase Godunov method for multifluid and multiphase flows, Journal of Computational Physics 150 (1999) 425–467], the hyperbolic part is first solved without relaxation terms with a simple, fast and robust algorithm, valid for unstructured meshes. Second, stiff relaxation terms are solved with a Newton method that also guarantees positivity and robustness. The algorithm and model are compared to exact solutions of the Euler equations as well as solutions of the five-equation model under extreme flow conditions, for interface computation and cavitating flows involving dynamics appearance of interfaces. In order to deal with correct dynamic of shock waves propagating through multiphase mixtures, the artificial heat exchange method of Petitpas et al. [F. Petitpas, E. Franquet, R. Saurel, O. Le Metayer, A relaxation-projection method for compressible flows. Part II. The artificial heat exchange for multiphase shocks, Journal of Computational Physics 225(2) (2007) 2214–2248] is adapted to the present formulation.  相似文献   

15.
The multiscale finite-volume (MSFV) method was originally developed for the solution of heterogeneous elliptic problems with reduced computational cost. Recently, some extensions of this method for parabolic problems have been proposed. These extensions proved effective for many cases, however, they are neither general nor completely satisfactory. For instance, they are not suitable for correctly capturing the transient behavior described by the parabolic pressure equation. In this paper, we present a general multiscale finite-volume method for parabolic problems arising, for example, from compressible multiphase flow in porous media. Opposed to previous methods, here, the basis and correction functions are solutions of full parabolic governing equations in localized domains. At the same time, to enhance the computational efficiency of the scheme, the basis functions are kept pressure independent and do not have to be recalculated as pressure evolves. This general approach requires no additional assumptions and its good efficiency and high accuracy is demonstrated for various challenging test cases. Finally, to improve the quality of the results and also to extend the scheme for highly anisotropic heterogeneous problems, it is combined with the iterative MSFV (i-MSFV) method for parabolic problems. As one iterates, the i-MSFV solutions of compressible multiphase problems (parabolic problems) converge to the corresponding fine-scale reference solutions in the same way as demonstrated recently for incompressible cases (elliptic problems). Therefore, the proposed MSFV method can also be regarded as an efficient linear solver for parabolic problems and studies of its efficiency are presented for many test cases.  相似文献   

16.
本文对于微通道内稀薄气体二维可压缩滑移流动建立了数学模型,采用连续介质流动控制方程与壁面速度滑移和温度跳跃边界条件相组合描述该问题,并利用SIMPLE算法求解,所得结果与文献进行了对比,在相同条件下得到了较高的一致性.文中利用该计算模型的计算结果分析了气体的压缩性和稀薄性对微通道气体流动的影响,结果表明在所计算工况下稀薄性的影响更大。  相似文献   

17.
GMRES算法在二维定常无粘流计算中的应用   总被引:6,自引:0,他引:6  
宁方飞  徐力平 《计算物理》2000,17(5):537-547
发展了GMRES算法的两种不同预处理方法求解二维无粘流体动力学方程组。在保证计算效率的基础上,采用了一种减小内存需求的途径。用两个算例对GMRES算法以及两种不同的预处理方法进行分析,同时与DDADI方法进行比较。通过对NACA0012有攻角超临界流动以及GAMM通道超音流的计算,表明两种预处理下的GMRES算法都具有收敛速度快的优点,LUSGS预处理方法略优于ILU预处理方法。  相似文献   

18.
We propose a novel method for alleviating the stringent CFL condition imposed by the sound speed in simulating inviscid compressible flow with shocks, contacts and rarefactions. Our method is based on the pressure evolution equation, so it works for arbitrary equations of state, chemical species etc. and is derived in a straight-forward manner. Similar methods have been proposed in the literature, but the equations they are based on and the details of the methods differ significantly. Notably our method leads to a standard Poisson equation similar to what one would solve for incompressible flow, but has an identity term more similar to a diffusion equation. In the limit as the sound speed goes to infinity, one obtains the Poisson equation for incompressible flow. This makes the method suitable for two-way coupling between compressible and incompressible flows and fully implicit solid–fluid coupling, although both of these applications are left to future work. We present a number of examples to illustrate the quality and behavior of the method in both one and two spatial dimensions, and show that for a low Mach number test case we can use a CFL number of 300 (whereas previous work was only able to use a CFL number of 3 on the same example).  相似文献   

19.
A novel finite-volume interface (contact) capturing method is presented for simulation of multi-component compressible flows with high density ratios and strong shocks. In addition, the materials on the two sides of interfaces can have significantly different equations of state. Material boundaries are identified through an interface function, which is solved in concert with the governing equations on the same mesh. For long simulations, the method relies on an interface compression technique that constrains the thickness of the diffused interface to a few grid cells throughout the simulation. This is done in the spirit of shock-capturing schemes, for which numerical dissipation effectively preserves a sharp but mesh-representable shock profile. For contact capturing, the formulation is modified so that interface representations remain sharp like captured shocks, countering their tendency to diffuse via the same numerical diffusion needed for shock-capturing. Special techniques for accurate and robust computation of interface normals and derivatives of the interface function are developed. The interface compression method is coupled to a shock-capturing compressible flow solver in a way that avoids the spurious oscillations that typically develop at material boundaries. Convergence to weak solutions of the governing equations is proved for the new contact capturing approach. Comparisons with exact Riemann problems for model one-dimensional multi-material flows show that the interface compression technique is accurate. The method employs Cartesian product stencils and, therefore, there is no inherent obstacles in multiple dimensions. Examples of two- and three-dimensional flows are also presented, including a demonstration with significantly disparate equations of state: a shock induced collapse of three-dimensional van der Waal’s bubbles (air) in a stiffened equation of state liquid (water) adjacent to a Mie-Grüneisen equation of state wall (copper).  相似文献   

20.
Von Neumann stability theory is applied to analyze the stability of a fully coupled implicit (FCI) scheme based on the lower-upper symmetric Gauss-Seidel (LU-SGS) method for inviscid chemical non-equilibrium flows. The FCI scheme shows excellent stability except the case of the flows involving strong recombination reactions, and can weaken or even eliminate the instability resulting from the stiffness problem, which occurs in the subsonic high-temperature region of the hypersonic flow field. In addition, when the full Jacobian of chemical source term is diagonalized, the stability of the FCI scheme relies heavily on the flow conditions. Especially in the case of high temperature and subsonic state, the CFL number satisfying the stability is very small. Moreover, we also consider the effect of the space step, and demonstrate that the stability of the FCI scheme with the diagonalized Jacobian can be improved by reducing the space step. Therefore, we propose an improved method on the grid distribution according to the flow conditions. Numerical tests validate sufficiently the foregoing analyses. Based on the improved grid, the CFL number can be quickly ramped up to large values for convergence acceleration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号