首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The main limitation in the application of hydride vapor phase epitaxy for the large scale production of thick free-standing GaN substrates is the so-called parasitic deposition, which limits the growth time and wafer thickness by blocking the gallium precursor inlet. By utilizing Cl2 instead of the usual HCl gas for the production of the gallium chlorine precursor, we found a rapid increase in growth rate from ∼80 to ∼400 μm/h for an equally large flow of 25 sccm. This allowed us to grow, without any additional optimization, 1.2 mm thick high quality GaN wafers, which spontaneously lifted off from their 0.3° mis-oriented GaN on sapphire HCl-based HVPE templates. These layers exhibited clear transparencies, indicating a high purity, dislocation densities in the order of 106 cm−2, and narrow rocking curve XRD FWHMs of 54 and 166 arcsec in for the 0002 and 101−5 directions, respectively.  相似文献   

2.
The present study focused on the effect of an intermediate-temperature (IT; ∼900 °C) buffer layer on GaN films, grown on an AlN/sapphire template by hydride vapor phase epitaxy (HVPE). In this paper, the surface morphology, structural quality, residual strain, and luminescence properties are discussed in terms of the effect of the buffer layer. The GaN film with an IT-buffer revealed a relatively lower screw-dislocation density (3.29×107 cm−2) and a higher edge-dislocation density (8.157×109 cm−2) than the GaN film without an IT-buffer. Moreover, the IT-buffer reduced the residual strain and improved the luminescence. We found that the IT-buffer played an important role in the reduction of residual strain and screw-dislocation density in the overgrown layer through the generation of edge-type dislocations and the spontaneous treatment of the threading dislocation by interrupting the growth and increasing the temperature.  相似文献   

3.
A freestanding m-plane GaN wafer is fabricated by using the hydride vapor-phase epitaxy (HVPE) technique on an aluminum carbide buffer layer on an m-plane sapphire substrate. X-ray pole-figure measurements show a clear m-plane orientation of the GaN surface. The full-width at half-maximum (FWHM) of GaN (1 1¯ 0 0) X-ray rocking curve (XRC) with the scattering vector along the [1 1 2¯ 0] direction is approximately 800 arcsec; this indicates good crystallinity. On the other hand, the FWHM for the case in which the scattering vector is oriented along the [0 0 0 1] direction is broad; this suggests the influence of structural defects along this direction. In fact, basal plane stacking faults (BSF) with a density of approximately 3×105 cm−1 is observed by transmission electron microscopy (TEM). The preparation of a 45-mm-diameter m-plane GaN wafer due to spontaneous separation of the GaN layer from the sapphire substrate is demonstrated.  相似文献   

4.
We succeeded in preparing very thick c-plane bulk gallium nitride (GaN) crystals grown by hydride vapor phase epitaxy. Growth of the bulk GaN crystals was performed on templates with 3 μm GaN layer grown by metal organic chemical vapor deposition on (0 0 0 1) sapphire substrates. Colorless freestanding bulk GaN crystals were obtained through self-separation processes. The crystal's diameter and thickness were about 52 and 5.8 mm, respectively. No surface pits were observed within an area of 46 mm diameter of the bulk GaN crystal. The dislocation density decreased with growth direction (from N-face side to Ga-face side) and ranged from 5.1×106 cm−2 near the N-face surface to 1.2×106 cm−2 near the Ga-face. A major impurity was Si, and other impurities (O, C, Cl, H, Fe, Ni and Cr) were near or below the detection limits by SIMS measurements.  相似文献   

5.
The growth of GaN based structures on Si(1 1 0) substrates by molecular beam epitaxy using ammonia as the nitrogen precursor is reported. The structural, optical and electrical properties of such structures are assessed and are quite similar to the ones obtained on Si(1 1 1) in-spite of the very different substrate surface symmetry. A threading dislocation density of 3.7×109 cm−2 is evaluated by transmission electron microscopy, which is in the low range of typical densities obtained on up to 2 μm thick GaN structures grown on Si(1 1 1). To assess the potential of such structure for device realization, AlGaN/GaN high electron mobility transistor and InGaN/GaN light emitting diode heterostructures were grown and their properties are compared with the ones obtained on Si(1 1 1).  相似文献   

6.
We investigated the properties of Ge-doped, high-quality bulk GaN crystals with Ge concentrations up to 2.4×1019 cm−3. The Ge-doped crystals were fabricated by hydride vapor phase epitaxy with GeCl4 as the dopant source. Cathodoluminescence imaging revealed no increase in the dislocation density at even the highest Ge concentration, with values as low as 3.4×106 cm−2. The carrier concentration, as determined by Hall measurement, was almost identical to the combined concentration of Ge and unintentionally incorporated Si. The electron mobilities were 260 and 146 cm2 V−1 s−1 for n=3.3×1018 and 3.35×1019 cm−3, respectively; these values are markedly larger than those reported in the past for Ge-doped GaN thin films. The optical absorption coefficient was quite small below the band gap energy; it slightly increased with increase in Ge concentration. Thermal conductivity, estimated by the laser-flash method, was virtually independent of Ge concentration, maintaining an excellent value around 2.0 W cm−1 K−1. Thermal expansion coefficients along the a- and m-axes were approximately constant at 5.0×10−6 K−1 in the measured doping concentration range.  相似文献   

7.
Zinc-blende GaN quantum dots were grown on 3C-AlN(0 0 1) by a vapor–liquid–solid process in a molecular beam epitaxy system. We were able to control the density of the quantum dots in a range of 5×108–5×1012 cm−2. Photoluminescence spectroscopy confirmed the optical activity of the GaN quantum dots in a range of 1011–5×1012 cm−2. The data obtained give an insight to the condensation mechanism of the vapor–liquid–solid process in general, because the GaN quantum dots condense in metastable zinc-blende crystal structure supplied by the substrate, and not in the wurtzite crystal structure expected from free condensation in the droplet.  相似文献   

8.
High voltage GaN Schottky diodes require a thick blocking layer with an exceptionally low carrier concentration. To this aim, a metal organic chemical vapor deposition process was developed to create a (14 μm) thick stress-free homoepitaxial GaN film. Low temperature photoluminescence measurements are consistent with low donor background and low concentration of deep compensating centers. Capacitance–voltage measurements performed at 30 °C verified a low level of about 2×1015 cm−3 of n-type free carriers (unintentional doping), which enabled a breakdown voltage of about 500 V. A secondary ion mass spectrometry depth profile confirms the low concentration of background impurities and X-ray diffraction extracted a low dislocation density in the film. These results indicate that thick GaN films can be deposited with free carrier concentrations sufficiently low to enable high voltage rectifiers for power switching applications.  相似文献   

9.
Structural and optical properties of nonpolar a-plane ZnO films grown with different II/VI ratios on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy were investigated. Even by increasing the II/VI ratio across the stoichiometric flux condition a consistent surface morphology of striated stripes along the ZnO 〈0 0 0 1〉 direction without any pit formation was observed, which is contrary to polar c-plane ZnO films. Root mean square surface roughness, full width at half maximum values of X-ray rocking curves, defect densities, and photoluminescence were changed with the II/VI ratio. The sample grown with stoichiometric flux condition showed the lowest value of rms roughness, the smallest threading dislocation and stacking fault densities of ∼4.7×108 cm−2 and ∼9.5×104 cm−1, respectively, and the highest intensity of DoX peak. These results imply that the stoichiometric flux growth condition is suitable to obtain superior structural and optical properties compared to other flux conditions.  相似文献   

10.
F. Zhao  J. Ma  B. Weng  D. Li  G. Bi  A. Chen  J. Xu  Z. Shi 《Journal of Crystal Growth》2010,312(19):2695-2698
PbSe thin film was grown on a patterned Si substrate with (1 1 1)-orientation by molecular-beam epitaxy (MBE). On the mesa, a low dislocation density of 9×105 cm−2 was confirmed by the etch-pits density (EPD) wet-etching technique. The photoluminescence (PL) intensity at room temperature from the low dislocation PbSe film was much higher than that from the PbSe film grown on the planar area, which further indicated the high-quality of PbSe thin film grown on patterned Si substrate.  相似文献   

11.
The electrical and optical properties of Mg-doped a- and c-plane GaN films grown by metalorganic vapor phase epitaxy were systematically investigated. The photoluminescence spectra of Mg-doped a- and c-plane GaN films exhibit strong emissions related to deep donors when Mg doping concentrations are above 1×1020 cm−3 and 5×1019 cm−3, respectively. The electrical properties also indicate the existence of compensating donors because the hole concentration decreases at such high Mg doping concentrations. In addition, we estimated the ND/NA compensation ratio of a- and c-plane GaN by variable-temperature Hall effect measurement. The obtained results indicate that the compensation effect of the Mg-doped a-plane GaN films is lower than that of the Mg-doped c-plane GaN films.  相似文献   

12.
Void formation at the interface between thick AlN layers and (0 0 0 1) sapphire substrates was investigated to form a predefined separation point of the thick AlN layers for the preparation of freestanding AlN substrates by hydride vapor phase epitaxy (HVPE). By heating 50–200 nm thick intermediate AlN layers above 1400 °C in a gas flow containing H2 and NH3, voids were formed beneath the AlN layers by the decomposition reaction of sapphire with hydrogen diffusing to the interface. The volume of the sapphire decomposed at the interface increased as the temperature and time of the heat treatment was increased and as the thickness of the AlN layer decreased. Thick AlN layers subsequently grown at 1450 °C after the formation of voids beneath the intermediate AlN layer with a thickness of 100 nm or above self-separated from the sapphire substrates during post-growth cooling with the aid of voids. The 79 μm thick freestanding AlN substrate obtained using a 200 nm thick intermediate AlN layer had a flat surface with no pits, high optical transparency at wavelengths above 208.1 nm, and a dislocation density of 1.5×108 cm−2.  相似文献   

13.
A new hydride vapor phase epitaxy (HVPE)-based approach for the fabrication of freestanding GaN (FS-GaN) substrates was investigated. For the direct formation of low-temperature GaN (LT-GaN) layers, the growth parameters were optimized: the polarity of ZnO, the growth temperature, and the V/III ratio. The FS-GaN layer was achieved by gas etching in an HVPE reactor. A fingerprint of Zn out-diffusion was detected in the photoluminescence measurements, especially for the thin (80 μm) FS-GaN film; however, a thicker film (400 μm) was effectively reduced by optimization of GaN growth.  相似文献   

14.
Non-polar a-plane (1 1 2¯ 0) GaN films were grown on r-plane sapphire by metal–organic vapor phase epitaxy and were subsequently annealed for 90 min at 1070 °C. Most dislocations were partial dislocations, which terminated basal plane stacking faults. Prior to annealing, these dislocations were randomly distributed. After annealing, these dislocations moved into arrays oriented along the [0 0 0 1] direction and aligned perpendicular to the film–substrate interface throughout their length, although the total dislocation density remained unchanged. These changes were accompanied by broadening of the symmetric X-ray diffraction 1 1 2¯ 0 ω-scan widths. The mechanism of movement was identified as dislocation glide, occurring due to highly anisotropic stresses (confirmed by X-ray diffraction lattice parameter measurements) and evidenced by macroscopic slip bands observed on the sample surface. There was also an increase in the density of unintentionally n-type doped electrically conductive inclined features present at the film–substrate interface (as observed in cross-section using scanning capacitance microscopy), suggesting out-diffusion of impurities from the substrate along with prismatic stacking faults. These data suggest that annealing processes performed close to film growth temperatures can affect both the microstructure and the electrical properties of non-polar GaN films.  相似文献   

15.
GaN epilayers are grown on (1 1 1) oriented single crystal diamond substrate by ammonia-source molecular beam epitaxy. Each step of the growth is monitored in situ by reflection high energy electron diffraction. It is found that a two-dimensional epitaxial wurtzite GaN film is obtained. The surface morphology is smooth: the rms roughness is as low as 1.3 nm for 2×2 μm2 scan. Photoluminescence measurements reveal pretty good optical properties. The GaN band edge is centred at 3.469 eV with a linewidth of 5 meV. These results demonstrate that GaN heteroepitaxially grown on diamond opens new rooms for high power electronic applications.  相似文献   

16.
A 4–6 μm thick a-plane (1 1 2¯ 0) AlN was grown on r-plane sapphire substrate by low-pressure hydride vapor phase epitaxy (LP-HVPE), using a direct growth without any nitridation and buffer layer, a single-step nitridation growth, a two-step nitridation growth and a two-step buffer growth method. For the two-step buffer growth procedure, smoother surface is observed with the lower full widths at half maximum (FWHM) of X-ray rocking curves (XRC) compared with the other two kinds of nitridation procedures. A smaller FWHM of in-plane XRC peak anisotropy features are reversed, which is consistent with the smaller in-plane stress anisotropic distribution in a-plane AlN, when the two-step nitridation or buffer growth method is used. In four kinds of initial growth procedures, the two-step buffer method is the suitable method for the growth of a-plane AlN by HVPE with the high crystal quality and more isotropic distribution.  相似文献   

17.
We have performed a detailed investigation of the metal-organic chemical vapor deposition (MOCVD) growth and characterization of InN nanowires formed on Si(1 1 1) substrates under nitrogen rich conditions. The growth of InN nanowires has been demonstrated by using an ion beam sputtered (∼10 nm) Au seeding layer prior to the initiation of growth. We tried to vary the growth temperature and pressure in order to obtain an optimum growth condition for InN nanowires. The InN nanowires were grown on the Au+In solid solution droplets caused by annealing in a nitrogen ambient at 700 °C. By applying this technique, we have achieved the formation of InN nanowires that are relatively free of dislocations and stacking faults. Scanning electron microscopy (SEM) showed wires with diameters of 90–200 nm and lengths varying between 3 and 5 μm. Hexagonal and cubic structure is verified by high resolution X-ray diffraction (HR-XRD) spectrum. Raman measurements show that these wurtzite InN nanowires have sharp peaks E2 (high) at 491 cm−1 and A1 (LO) at 591 cm−1.  相似文献   

18.
Electrical properties, deep traps spectra and structural performance were studied for m-GaN films grown on m-SiC substrates by standard metalorganic chemical vapor deposition (MOCVD) and by MOCVD with lateral overgrowth (ELO) or sidewall lateral overgrowth (SELO). Standard MOCVD m-GaN films with a very high dislocation density over 109 cm−2 are semi-insulating n-type with the Fermi level pinned near Ec−0.7 eV when grown at high V/III ratio. For lower V/III they become more highly conducting, with the electrical properties still dominated by a high density (∼1016 cm−3) of Ec−0.6 eV electron traps. Lateral overgrowth that reduces the dislocation density by several orders of magnitude results in a marked increase in the uncompensated shallow donor density (∼1015 cm−3) and a substantial decrease of the density of major electron traps at Ec−0.25 and Ec−0.6 eV (down to about 1014 cm−3). Possible explanations are briefly discussed.  相似文献   

19.
This work assesses the relative effectiveness of four techniques to reduce the defect density in heteroepitaxial nonpolar a-plane GaN films grown on r-plane sapphire by metalorganic vapour phase epitaxy (MOVPE). The defect reduction techniques studied were: 3D–2D growth, SiNx interlayers, ScN interlayers and epitaxial lateral overgrowth (ELOG). Plan-view transmission electron microscopy (TEM) showed that the GaN layer grown in a 2D fashion had a dislocation and basal-plane stacking fault (BSF) density of (1.9±0.2)×1011 cm−2 and (1.1±0.9)×106 cm−1, respectively. The dislocation and BSF densities were reduced by all methods compared to this 2D-grown layer (used as a seed layer for the interlayer and ELOG methods). The greatest reduction was achieved in the (0 0 0 1) wing of the ELOG sample, where the dislocation density was <1×106 cm−2 and BSF density was (2.0±0.7)×104 cm−1. Of the in-situ techniques, SiNx interlayers were most effective: the interlayer with the highest surface coverage that was studied reduced the BSF density to (4.0±0.2)×105 cm−1 and the dislocation density was lowered by over two orders of magnitude to (3.5±0.2)×108 cm−2.  相似文献   

20.
Single crystalline ZnO film was grown on (1 1 1) Si substrate through employing an oxidized CrN buffer layer by plasma-assisted molecular beam epitaxy. Single crystalline characteristics were confirmed from in-situ reflection high energy electron diffraction, X-ray pole figure measurement, and transmission electron diffraction pattern, consistently. Epitaxial relationship between ZnO film and Si substrate is determined to be (0 0 0 1)ZnO‖(1 1 1)Si and [1 1 2¯ 0]ZnO‖[0 1 1]Si. Full-width at half-maximums (FWHMs) of (0 0 0 2) and (1 0 1¯ 1) X-ray rocking curves (XRCs) were 1.379° and 3.634°, respectively, which were significantly smaller than the FWHMs (4.532° and 32.8°, respectively) of the ZnO film grown directly on Si (1 1 1) substrate without any buffer. Total dislocation density in the top region of film was estimated to be ∼5×109 cm−2. Most of dislocations have a screw type component, which is different from the general cases of ZnO films with the major threading dislocations with an edge component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号