首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental investigation and analysis of heat transfer process between a gas-liquid spray flow and the row of smooth cylinders placed in the surface perpendicular to the flow has been performed. Among others, there was taken into account in the analysis the phenomenon of droplets bouncing and omitting the cylinder as well as the phenomenon of the evaporation process from the liquid film surface.In the experiments test cylinders were used, which were placed between two other cylinders standing in the row.From the experiments and the analysis the conclusion can be drawn that the heat transfer coefficients values for a row of the cylinders are higher than for a single cylinder placed in the gasliquid spray flow.
Wärmeübergang an eine senkrecht anf eine Zylinderreihe auftreffende Gas-Flüssigkeits-Sprüh-Strömung
Zusammenfassung Es wurden Messungen und theoretische Analysen des Wärmeübergangs zwischen einer Gas-FlüssigkeitsSprüh-Strömung und den glatten Oberflächen einer Zylinderreihe durchgeführt, die senkrecht zum Sprühstrahl angeordnet waren. Dabei wurde in der Analyse unter anderem das Phänomen betrachtet, daß die Tropfen die Zylinderwand treffen und verfehlen können und daß sich ein Verdampfungsprozeß aus dem flüssigen Film an der Zylinderoberfläche einstellt.Gemessen wurde an einem zwischen zwei Randzylindern befindlichen Zylinder.Die Experimente und die Analyse gestatten die Schlußfolgerung, daß der Wärmeübergangskoeffizient für eine Zylinderreihe höher ist als für einen einzelnen Zylinder in der Sprühströmung.

Nomenclature a distance between axes of cylinders, m - c l specific heat capacity of liquid, J/kg K - c g specific heat capacity of gas, J/kg K - D cylinder diameter, m - g l mass velocity of liquid, kg/m2s - ¯k average volume ratio of liquid entering film to amount of liquid directed at the cylinder in gas-liquid spray flow, dimensionless - k() local volume ratio of liquid entering film to amount of liquid directed at the cylinder in gas-liquid spray flow, dimensionless - L specific latent heat of vaporisation, J/kg - m mass fraction of water in gas-liquid spray flow, dimensionless - M constant in Eq. (9) - p pressure, Pa - p g statical pressure of gas, Pa - p w pressure of gas on the cylinder surface, Pa - p external pressure on the liquid film surface, Pa - r cylindrical coordinate, m - R radius of cylinder, m - T temperature, K, °C - T l, tl liquid temperature in the gas-liquid spray, K, °C - T w,tw temperature of cylinder surface, K, °C - T temperature of gas-liquid film interface, K - U liquid film velocity, m/s - w gas velocity on cylinder surface, m/s - w g gas velocity in free stream, m/s - W l liquid vapour mass ratio in free stream, dimensionless - W liquid vapour mass ratio at the edge of a liquid film, dimensionless - x coordinate, m - y coordinate, m - z complex variable, dimensionless - average heat transfer coefficient, W/m2K - local heat transfer coefficient, W/m2 K - average heat transfer coefficient between cylinder surface and gas, W/m2 K - g, local heat transfer coefficient between cylinder surface and gas, W/m2 K - mass transfer coefficient, kg/m2s - liquid film thickness, m - lg dynamic diffusion coefficient of liquid vapour in gas, kg/m s - pressure distribution function on a cylinder surface - function defined by Eq. (3) - l liquid dynamic viscosity, kg/m s - g gas dynamic viscosity, kg/m s - cylindrical coordinate, rad, deg - l thermal conductivity of liquid, W/m K - g thermal conductivity of gas, W/m K - mass transfer driving force, dimensionless - l density of liquid, kg/m3 - g density of gas, kg/m3 - w shear stress on the cylinder surface, N/m2 - w shear stress exerted by gas at the liquid film surface, N/m2 - air relative humidity, dimensionless - T -T w - w =T wTl Dimensionless parameters I= enhancement factor of heat transfer - m *=M l/Mg molar mass of liquid to the molar mass of gas ratio - Nu g= D/ g gas Nusselt number - Pr g=c g g/g gas Prandtl number - Pr l=clll liquid Prandtl number - ¯r=(r–R)/ dimensionless coordinate - Re g=wgD g/g gas Reynolds number - Re g,max=wg,max D g/g gas Reynolds number calculated for the maximal gas velocity between the cylinders - Sc=m * g/l–g Schmidt number =/R dimensionless film thickness  相似文献   

2.
The wedge subjected to tractions: a paradox resolved   总被引:4,自引:0,他引:4  
The classical two-dimensional solution provided by Lévy for the stress distribution in an elastic wedge, loaded by a uniform pressure on one face, becomes infinite when the opening angle 2 of the wedge satisfies the equation tan 2 = 2. Such pathological behavior prompted the investigation in this paper of the stresses and displacements that are induced by tractions of O(r ) as r0. The key point is to choose an Airy stress function which generates stresses capable of accommodating unrestricted loading. Fortunately conditions can be derived which pre-determine the form of the necessary Airy stress function. The results show that inhomogeneous boundary conditions can induce stresses of O(r ), O(r ln r), or O(r ln2 r) as r0, depending on which conditions are satisfied. The stress function used by Williams is sufficient only if the induced stress and displacement behavior is of the power type. The wedge loaded by uniform antisymmetric shear tractions is shown in this paper to exhibit stresses of O(ln r) as r0 for the half-plane or crack geometry. At the critical opening angle 2, uniform antisymmetric normal and symmetric shear tractions also induce the above type of stress singularity. No anticipating such stresses, Lévy used an insufficiently general Airy stress function that led to the observed pathological behavior at 2.  相似文献   

3.
In order to develop criteria for the physical evaluation of wood for soundboards of musical instruments, measurements were made of dynamic Young's modulusE, static Young's modulusE, internal frictionQ –1 in longitudinal direction, and specific gravity for numerous species of broad-leaved wood. From the results obtained, including those of our previous paper on coniferous wood [1], it was found that the suitability of wood for soundboards could be evaluated by the quantity ofQ –1/(E/), and that there were very high correlations betweenQ –1/(E/) andE/, and betweenE andE, regardless of wood species. Consequently, it becomes possible to select practically any wood suitable for soundboards by using the value ofE/, which can be measured easily, and it was derived that the relation betweenE/ andQ –1 of wood could be expressed by an exponential equation regardless of wood species.  相似文献   

4.
The rapidly forced pendulum equation with forcing sin((t/), where =<0p,p = 5, for 0, sufficiently small, is considered. We prove that stable and unstable manifolds split and that the splitting distanced(t) in the ( ,t) plane satisfiesd(t) = sin(t/) sech(/2) +O( 0 exp(–/2)) (2.3a) and the angle of transversal intersection,, in thet = 0 section satisfies 2 tan/2 = 2S s = (/2) sech(/2) +O(( 0 /) exp(–/2)) (2.3b) It follows that the Melnikov term correctly predicts the exponentially small splitting and angle of transversality. Our method improves a previous result of Holmes, Marsden, and Scheuerle. Our proof is elementary and self-contained, includes a stable manifold theorem, and emphasizes the phase space geometry.  相似文献   

5.
Experiments are conducted to test extant theory on the effect of uniform rotation on the angle of conical beam wave propagation excited by a sphere vertically oscillating at frequency in a density stratified fluid. The near-constant Brunt–Väisälä frequency stratification N produced in situ in a rotating cylindrical tank exhibits no effect of residual motion for the range of Froude numbers investigated. Good agreement between experiment and theory is found over the range of angles 15°<<65° using the synthetic schlieren visualization technique. In particular, the cut-off for wave propagation at =2, below which waves do not propagate, is clearly observed.  相似文献   

6.
Existence theorem for a minimum problem with free discontinuity set   总被引:6,自引:0,他引:6  
We study the variational problem Where is an open set in n ,n2gL q () L (), 1q<+, O<, <+ andH n–1 is the (n–1)-dimensional Hausdorff Measure.  相似文献   

7.
An algorithm is constructed for numerical determination of the flow parameters and coefficient of contraction of a jet in the case of irrotational lateral outflow of liquid from a semiinfinite stream through a nozzle of finite depth situated at an arbitrary angle to the mainstream flow. The solution is based on the use of N. E. Zhukovskii's method and the Schwarz-Christoffel formula. The results of calculations for a nozzle situated at an angle = /2 ± , where = /6, are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 162–164, January–February, 1977.  相似文献   

8.
An analytical solution is presented for the calculation of the flow field in a concentric cylinder viscometer of non-ideal Bingham-fluids, described by the Worrall-Tuliani rheological model. The obtained shear rate distribution is a function of the a priori unknown rheological parameters. It is shown that by applying an iterative procedure experimental data can be processed in order to obtain the proper shear rate correction and the four rheological parameters of the Worrall-Tuliani model as well as the yield surface radius. A comparison with Krieger's correction method is made. Rheometrical data for dense cohesive sediment suspensions have been reviewed in the light of this new method. For these suspensions velocity profiles over the gap are computed and the shear layer thicknesses were found to be comparable to visual observations. It can be concluded that at low rotation speeds the actually sheared layer is too narrow to fullfill the gap width requirement for granular suspensions and slip appears to be unavoidable, even when the material is sheared within itself. The only way to obtain meaningfull measurements in a concentric cylinder viscometer at low shear rates seems to be by increasing the radii of the viscometer. Some dimensioning criteria are presented.Notation A, B Integration constants - C Dimensionless rotation speed = µ/y - c = 2µ - d = 0 2–2cy - f() = (–0)2+2c(–y) - r Radius - r b Bob radius - r c Cup radius - r y Yield radius - r 0 Stationary surface radius - r Rotating Stationary radius - Y 0 Shear rate parameter = /µ Greek letters Shear rate - = (r y /r b )2– 1 - µ Bingham viscosity - µ0 Initial differential viscosity - µ µ0 - Rotation speed - Angular velocity - Shear stress - b Bob shear stress - B Bingham stress - y (True) yield stress - 0 Stress parameter = B Y 0 - B - y   相似文献   

9.
The Stokes flow of two immiscible fluids through a rigid porous medium is analyzed using the method of volume averaging. The volume-averaged momentum equations, in terms of averaged quantities and spatial deviations, are identical in form to that obtained for single phase flow; however, the solution of the closure problem gives rise to additional terms not found in the traditional treatment of two-phase flow. Qualitative arguments suggest that the nontraditional terms may be important when / is of order one, and order of magnitude analysis indicates that they may be significant in terms of the motion of a fluid at very low volume fractions. The theory contains features that could give rise to hysteresis effects, but in the present form it is restricted to static contact line phenomena.Roman Letters (, = , , and ) A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - g gravity vector, m2/s - H mean curvature of the- interface, m–1 - H area average of the mean curvature, m–1 - HH , deviation of the mean curvature, m–1 - I unit tensor - K Darcy's law permeability tensor, m2 - K permeability tensor for the-phase, m2 - K viscous drag tensor for the-phase equation of motion - K viscous drag tensor for the-phase equation of motion - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - n unit normal vector pointing from the-phase toward the-phase (n = –n ) - p c p P , capillary pressure, N/m2 - p pressure in the-phase, N/m2 - p intrinsic phase average pressure for the-phase, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r 0 radius of the averaging volume, m - t time, s - v velocity vector for the-phase, m/s - v phase average velocity vector for the-phase, m/s - v intrinsic phase average velocity vector for the-phase, m/s - v v , spatial deviation of the velocity vector for the-phase, m/s - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2 - surface tension of the- interface, N/m - viscous stress tensor for the-phase, N/m2 - / kinematic viscosity, m2/s  相似文献   

10.
Gelatin gel properties have been studied through the evolution of the storage [G()] and the loss [G()] moduli during gelation or melting near the gel point at several concentrations. The linear viscoelastic properties at the percolation threshold follow a power-law G()G() and correspond to the behavior described by a rheological constitutive equation known as the Gel Equation. The critical point is characterized by the relation: tan = G/G = cst = tan ( · /2) and it may be precisely located using the variations of tan versus the gelation or melting parameter (time or temperature) at several frequencies. The effect of concentration and of time-temperature gel history on its variations has been studied. On gelation, critical temperatures at each concentration were extrapolated to infinite gel times. On melting, critical temperatures were determined by heating step by step after a controlled period of aging. Phase diagrams [T = f(C)] were obtained for gelation and melting and the corresponding enthalpies were calculated using the Ferry-Eldridge relation. A detailed study of the variations of A with concentration and with gel history was carried out. The values of which were generally in the 0.60–0.72 range but could be as low as 0.20–0.30 in some experimental conditions, were compared with published and theoretical values.  相似文献   

11.
Theoretical and experimental studies have been made to investigate the variations of air core diameter, the most important hydrodynamic picture inside a swirl nozzle, with the pertinent guiding parameters like injection condition expressed as the Reynolds number at inlet to the nozzle and the geometrical dimensions of the nozzle, namely, the length and diameter of the swirl chamber, angle of spin chamber and the orifice diameter. The theoretical relations have been established through an approximated analytical solution of the hydrodynamics of flow of a viscous incompressible fluid in a swirl nozzle. A series of experiments have been carried out to support and compare the theoretical results. Finally, it has been recognized that for any nozzle, the air core diameter becomes a direct function of Reynolds number Re i at inlet to the nozzle only at its lower range and then remains constant. Amongst the nozzle geometrics, the ratio of orifice to swirl chamber diameter D 2/D 1 has got the most predominant effect on the air core diameter. An increase in the ratio of orifice to swirl chamber diameter D 2/D 1, and in the spin chamber angle 2 and a decrease in the swirl chamber length to diameter ratio L 1/D 1 increase the ratio of air core to orifice diameter and vice versa.Nomenclature A E Area of tangential inlet ports of the nozzle - A 2 Area of the orifice - a Air core radius - D 1 Swirl chamber diameter - D 2 Orifice diameter - d 2 Air core diameter - E A nondimensional parameter defined by equation (14) - E R A nondimensional parameter defined by equation (33) - L 1 Length of the swirl chamber - P Static pressure - P b Back pressure of the nozzle - Q Volume flow rate - R Radius vector or the longitudinal co-ordinate with respect to spherical co-ordinate system (figure 3) - R 1 Radius of the swirl chamber - R 2 Radius of the orifice - Re i Reynolds number at inlet to the nozzle - R z Radius of the nozzle at any section - r Radial distance from the nozzle axis - U Longitudinal component of velocity with respect to spherical co-ordinate system (figure 3) - V Component of velocity in the axial plane perpendicular to R as defined in (figure 3) - V r Radial velocity component - V z Axial velocity component - V Ø Tangential velocity component - Average tangential velocity at inlet to the nozzle - w Component of velocity perpendicular to axial plane with respect to the spherical co-ordinate as defined in figure 3 - z Distance along the nozzle axis from its inlet plane - Half of the spin chamber angle - Boundary layer thickness - 2 Boundary layer thickness at the orifice - Angle which a radius vector according to the system of spherical coordinates (figure 3) makes with the nozzle axis - Dynamic viscosity - Kinematic viscosity - Density - Ø Running co-ordinate in the azimuthal direction with respect to the cylindrical polar co-ordinate system as shown in figure 3 - Circulation constant  相似文献   

12.
Chernyi’s series method[1] is not proper for the case that(γ-l)/(γ+l)<<2/(γ+1)×M2sin2β (γ=cp/cv-adiabatic index number, M-Much number, β-shock incidence). In this paper, we only suppose that in the neighbour of the shock, there exists a shock layer in which the density of the gas is very big, but we do not remove the case that (γ-1)/(γ+1)<<2/(γ+1)M2sin2β.  相似文献   

13.
Linear stability theory is used to investigate the onset of longitudinal vortices in laminar boundary layers along horizontal semi-infinite flat plates heated or cooled isothermally from below by considering the density inversion effect for water using a cubic temperature-density relationship. The analysis employs non-parallel flow model incorporating the variation of the basic flow and temperature fields with the streamwise coordinate as well as the transverse velocity component in the disturbance equations. Numerical results for the critical Grashof number Gr L * =Gr X * /Re X< Emphasis>/3/2 are presented for thermal conditions corresponding to –0.5 1–2.0 and –0.8 21.2.Nomenclature a wavenumber, 2/ - D operator, d/d - F (f–f)/2 - f dimensionless stream function - g gravitational acceleration - G eigenvalue, Gr L/ReL - Gr L Grashof number based on L - Gr X Grashof number based on X - L characteristic length, (X/U)1/2 - M number of divisions in y direction - P pressure - Pr Prandtl number, / - p dimensionless pressure, P/( 2 /Re L) - Re L, ReX Reynolds numbers, (U L/)=Re X< 1/2 and (U), respectively - T temperature - U, V, W velocity components in X, Y, Z directions - u, v, w dimensionless perturbation velocities, (U, V, W)/U - X, Y, Z rectangular coordinates - x, y, z dimensionless coordinates, (X, Y, Z)/L - thermal diffusivity - coefficient of thermal expansion - 1, 2 temperature coefficients for density-temperature relationship - similarity variable, Y/L=y - dimensionless temperature disturbance, /T - dimensionless wavelength of vortex rolls, 2/a - 1, 2 thermal parameters defined by equation (12) - kinematic viscosity - density - dimensionless basic temperature, (T b T )/T - –1 - T temperature difference, (T wT ) - * critical value or dimensionless disturbance amplitude - prime, disturbance quantity or differentiation with respect to - b basic flow quantity - max value at a density maximum - w value at wall - free stream condition  相似文献   

14.
In this paper we continue previous studies of the closure problem for two-phase flow in homogeneous porous media, and we show how the closure problem can be transformed to a pair of Stokes-like boundary-value problems in terms of pressures that have units of length and velocities that have units of length squared. These are essentially geometrical boundary value problems that are used to calculate the four permeability tensors that appear in the volume averaged Stokes' equations. To determine the geometry associated with the closure problem, one needs to solve the physical problem; however, the closure problem can be solved using the same algorithm used to solve the physical problem, thus the entire procedure can be accomplished with a single numerical code.Nomenclature a a vector that maps V onto , m-1. - A a tensor that maps V onto . - A area of the - interface contained within the macroscopic region, m2. - A area of the -phase entrances and exits contained within the macroscopic region, m2. - A area of the - interface contained within the averaging volume, m2. - A area of the -phase entrances and exits contained within the averaging volume, m2. - Bo Bond number (= (=(–)g2/). - Ca capillary number (= v/). - g gravitational acceleration, m/s2. - H mean curvature, m-1. - I unit tensor. - permeability tensor for the -phase, m2. - viscous drag tensor that maps V onto V. - * dominant permeability tensor that maps onto v , m2. - * coupling permeability tensor that maps onto v , m2. - characteristic length scale for the -phase, m. - l characteristic length scale representing both and , m. - L characteristic length scale for volume averaged quantities, m. - n unit normal vector directed from the -phase toward the -phase. - n unit normal vector representing both n and n . - n unit normal vector representing both n and n . - P pressure in the -phase, N/m2. - p superficial average pressure in the -phase, N/m2. - p intrinsic average pressure in the -phase, N/m2. - p p , spatial deviation pressure for the -phase, N/m2. - r 0 radius of the averaging volume, m. - r position vector, m. - t time, s. - v fluid velocity in the -phase, m/s. - v superficial average velocity in the -phase, m/s. - v intrinsic average velocity in the -phase, m/s. - v v , spatial deviation velocity in the -phase, m/s. - V volume of the -phase contained within the averaging volmue, m3. - averaging volume, m3. Greek Symbols V /, volume fraction of the -phase. - viscosity of the -phase, Ns/m2. - density of the -phase, kg/m3. - surface tension, N/m. - (v +v T ), viscous stress tensor for the -phase, N/m2.  相似文献   

15.
The temperature field of starting thermal plumes were measured in a rotating annulus with various rotation rates and buoyancies. The experiments revealed many details of the internal structure of these convective phenomena and also significant horizontal displacements from their source. Measurements show an increase in the maximum temperature observed in the thermal caps with increasing rotation and a more rapid cooling of the buoyancy source.List of symbols D angle relating inward centripetal acceleration to buoyant acceleration, defined by tan D = R/g - g gravitational acceleration - P total pressure of ambient fluid - R radial coordinate measured from rotation axis - R 0 distance from rotation axis to buoyancy source - u velocity of fluid parcel along the radial direction - velocity of fluid parcel along the azimuthal direction - w velocity of fluid parcel along the axial direction - z axial coordinate, measured upward from the plane containing the buoyancy source - density of a buoyant parcel of fluid - 0 density of the ambient fluid - azimuthal angle measured from the radial line passing through the buoyancy source - rotation rate of the R––z coordinate system in radians/second  相似文献   

16.
Based on the complex viscosity model various steady-state and transient material functions have been completed. The model is investigated in terms of a corotational frame reference. Also, BKZ-type integral constitutive equations have been studied. Some relations between material functions have been derived. C –1 Finger tensor - F[], (F –1[]) Fourier (inverse) transform - rate of deformation tensor in corotating frame - h(I, II) Wagner's damping function - J (x) Bessel function - m parameter inh (I, II) - m(s) memory function - m k, nk integers (powers in complex viscosity model) - P principal value of the integral - parameter in the complex viscosity model - rate of deformation tensor - shear rates - [], [] incomplete gamma function - (a) gamma function - steady-shear viscosity - * complex viscosity - , real and imaginary parts of * - 0 zero shear viscosity - +, 1 + stress growth functions - , 1 - stress relaxation functions - (s) relaxation modulus - 1(s) primary normal-stress coefficient - ø(a, b; z) degenerate hypergeometric function - 1, 2 time constants (parameters of *) - frequency - extra stress tensor  相似文献   

17.
A three-parameter model describing the shear rate-shear stress relation of viscoelastic liquids and in which each parameter has a physical significance, is applied to a tangential annular flow in order to calculate the velocity profile and the shear rate distribution. Experiments were carried out with a 5000 wppm aqueous solution of polyacrylamide and different types of rheometers. In a shear-rate range of seven decades (5 10–3 s–1 < < 1.2 105 s–1) a good agreement is obtained between apparent viscosities calculated with our model and those measured with three different types of rheometers, i.e. Couette rheometers, a cone-and-plate rheogoniometer and a capillary tube rheometer. a physical quantity defined by:a = {1 – ( / 0)}/ 0 (Pa–1) - C constant of integration (1) - r distancer from the center (m) - r 1,r 2 radius of the inner and outer cylinder (m) - v r local tangential velocity at a distancer from the center (v r = r r) (m s–1) - v 2 local tangential velocity at a distancer 2 from the center (m s–1) - shear rate (s–1) - local shear rate (s–1) - 1 wall shear rate at the inner cylinder (s–1) - dynamic viscosity (Pa s) - a apparent viscosity (a = / ) (Pa s) - a1 apparent viscosity at the inner cylinder (Pa s) - 0 zero-shear viscosity (Pa s) - infinite-shear viscosity (Pa s) - shear stress (Pa) - r local shear stress at a distancer from the center (Pa) - 0 yield stress (Pa) - 1, 2 wall shear-stress at the inner and outer cylinder (Pa) - r local angular velocity (s–1) - 2 angular velocity of the outer cylinder (s–1)  相似文献   

18.
Summary A three-parameter model is introduced to describe the shear rate — shear stress relation for dilute aqueous solutions of polyacrylamide (Separan AP-30) or polyethylenoxide (Polyox WSR-301) in the concentration range 50 wppm – 10,000 wppm. Solutions of both polymers show for a similar rheological behaviour. This behaviour can be described by an equation having three parameters i.e. zero-shear viscosity 0, infinite-shear viscosity , and yield stress 0, each depending on the polymer concentration. A good agreement is found between the values calculated with this three-parameter model and the experimental results obtained with a cone-and-plate rheogoniometer and those determined with a capillary-tube rheometer.
Zusammenfassung Der Zusammenhang zwischen Schubspannung und Schergeschwindigkeit von strukturviskosen Flüssigkeiten wird durch ein Modell mit drei Parametern beschrieben. Mit verdünnten wäßrigen Polyacrylamid-(Separan AP-30) sowie Polyäthylenoxidlösungen (Polyox WSR-301) wird das Modell experimentell geprüft. Beide Polymerlösungen zeigen im untersuchten Schergeschwindigkeitsbereich von ein ähnliches rheologisches Verhalten. Dieses Verhalten kann mit drei konzentrationsabhängigen Größen, nämlich einer Null-Viskosität 0, einer Grenz-Viskosität und einer Fließgrenze 0 beschrieben werden. Die Ergebnisse von Experimenten mit einem Kegel-Platte-Rheogoniometer sowie einem Kapillarviskosimeter sind in guter Übereinstimmung mit den Werten, die mit dem Drei-Parameter-Modell berechnet worden sind.

a Pa–1 physical quantity defined by:a = {1 – ( / 0)}/ 0 - c l concentration (wppm) - D m capillary diameter - L m length of capillary tube - P Pa pressure drop - R m radius of capillary tube - u m s–1 average velocity - v r m s–1 local axial velocity at a distancer from the axis of the tube - shear rate (–dv r /dr) - local shear rate in capillary flow - s–1 wall shear rate in capillary flow - Pa s dynamic viscosity - a Pa s apparent viscosity defined by eq. [2] - ( a ) Pa s apparent viscosity in capillary tube at a distanceR from the axis - 0 Pa s zero-shear viscosity defined by eq. [4] - Pa s infinite-shear viscosity defined by eq. [5] - l ratior/R - kg m density - Pa shear stress - 0 Pa yield stress - r Pa local shear stress in capillary flow - R Pa wall shear stress in capillary flow R = (PR/2L) - v m3 s–1 volume rate of flow With 8 figures and 1 table  相似文献   

19.
The behavior of supersonic mixing layers under three conditions has been examined by schlieren photography and laser Doppler velocimetry. In the schlieren photographs, some large-scale, repetitive patterns were observed within the mixing layer; however, these structures do not appear to dominate the mixing layer character under the present flow conditions. It was found that higher levels of secondary freestream turbulence did not increase the peak turbulence intensity observed within the mixing layer, but slightly increased the growth rate. Higher levels of freestream turbulence also reduced the axial distance required for development of the mean velocity. At higher convective Mach numbers, the mixing layer growth rate was found to be smaller than that of an incompressible mixing layer at the same velocity and freestream density ratio. The increase in convective Mach number also caused a decrease in the turbulence intensity ( u/U).List of symbols a speed of sound - b total mixing layer thickness between U 1 – 0.1 U and U 2 + 0.1 U - f normalized third moment of u-velocity, f u3/(U)3 - g normalized triple product of u2 , g u2/(U)3 - h normalized triple product of u 2, h u 2/(U)3 - l u axial distance for similarity in the mean velocity - l u axial distance for similarity in the turbulence intensity - M Mach number - M c convective Mach number (for 1 = 2), M c (U 1U 2)/(a 1 + a 2) - P static pressure - r freestream velocity ratio, r U 2/U 1 - Re unit Reynolds number, Re U/ - s freestream density ratio, s 2/1 - T t total temperature - u instantaneous streamwise velocity - u deviation of u-velocity, uuU - U local mean streamwise velocity - U 1 primary freestream velocity - U 2 secondary freestream velocity - average of freestream velocities, (U 1 + U 2)/2 - U freestream velocity difference, U U 1U 2 - instantaneous transverse velocity - v deviation of -velocity, V - V local mean transverse velocity - x streamwise coordinate - y transverse coordinate - y 0 transverse location of the mixing layer centerline - ensemble average - ratio of specific heats - boundary layer thickness (y-location at 99.5% of free-stream velocity) - similarity coordinate, (yy 0)/b - compressible boundary layer momentum thickness - viscosity - density - standard deviation - dimensionless velocity, (UU 2)/U - 1 primary stream - 2 secondary stream A version of this paper was presented at the 11th Symposium on Turbulence, October 17–19, 1988, University of Missouri-Rolla  相似文献   

20.
Übersicht MitF(x, y) als Spannungsfunktion einer Welle ohne Nut und(, y) als Potentialfunktion des Quelle-Senke-Systems erhält man Spannungsfunktionen(, y) =F(x, y) –(, y) für Wellen mit tiefen Längsnuten. Es wird gezeigt, daß sich damit die Schubspannungen in den Läufern von Schraubenverdichtern ermitteln lassen.
Shearing stresses in shafts with deep longitudinal grooves
Summary The stress functions(, y) of shafts with deep longitudinal grooves may be represented by(, y) =F(x, y) –(, y) whereF(x, y) is the stress function of a cylindrical shaft without grooves and(, y) denotes the potential function of the source-sink system. It is shown that the shearing stresses in rotors of screw-compressors may be obtained in this way.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号