首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe the novel use of water-in-oil (W/O) microemulsions to achieve unique separations in microemulsion electrokinetic chromatography (MEEKC). The choice and concentration of the buffer type, surfactant and co-surfactant were all examined and optimized. Separations of a range of neutral and acidic analytes was shown to be markedly different to that obtained by (oil-in-water) O/W MEEKC. Neutral solutes are separated by virtue of their solubility (log P) values in O/W MEEKC with the more water-insoluble solutes migrating last. This separation process does not occur in W/O, as neutral solutes are not separated in order of log P.  相似文献   

2.
This study describes for the first time, the ability of a normal stacking mode (NSM) on-line concentration step coupled with water-in-oil (W/O) microemulsion electrokinetic chromatography (MEEKC), using six common penicillin antibiotics (oxacillin, penicillin V, penicillin G, nafcillin, ampicillin, and amoxicillin) as test analytes. Optimization of penicillin separation in the conventional W/O MEEKC system demonstrated that change in the type and concentration of the oil phase (1-butanol) and column temperature had a pronounced effect on the separation. With the subsequent development of the NSM coupled with W/O MEEKC, improved separation and detection sensitivities were observed when an organic solvent plug (1-propanol; 1.04 cm) was placed between the W/O microemulsion and the sample solutions. This could be attributed to the solution viscosity difference between the aqueous sample zone and the organic solvent plug causing the penicillin to be stacked in this 1-propanol plug. The optimal NSM W/O MEEKC provided about 12-fold increase in detection sensitivity compared with conventional sample injection (50 mbar, 3 s). Finally, this proposed method was successfully applied in the analyses of several food samples (porcine organs) spiked with penicillin.  相似文献   

3.
Cao J  Chen J  Yi L  Li P  Qi LW 《Electrophoresis》2008,29(11):2310-2320
Oil-in-water (O/W) and water-in-oil (W/O) MEEKC were compared for their abilities to separate and detect eight phenolic acids and five diterpenoids in Radix et Rhizoma Salviae Miltiorrhizae (RRSM). The effects of oil type and concentration, organic modifier, SDS, and buffer concentration on separation were examined in order to optimize the two methods. Oil contents and organic modifier were found to markedly influence the separation selectivity for both O/W and W/O systems. SDS concentration rarely affected separation resolution for O/W MEEKC, and separation of eight phenolic acids and five diterpenoids could be improved by changing the buffer concentration for W/O MEEKC. A highly efficient O/W MEEKC separation method, where the 13 compounds were separated with baseline resolution, was achieved by using a microemulsion solution of pH 8.0 containing 0.6% cyclohexane, 3.0% SDS, 6.0% 1-butanol, and 3.0% ACN. The W/O MEEKC was unable to resolve all the components. In addition, the analytic time in O/W MEEKC was shorter than that in W/O MEEKC. Finally, the developed O/W MEEKC method was successfully applied to determine analytic compounds in RRSM samples.  相似文献   

4.
A novel additive of multi‐walled carbon nanotubes (MWNTs) dispersed with cationic surfactants or mixed cationic/anionic surfactants was used for MEEKC separation of eight phenolic compounds, four glycosides, and one phenanthraquinone. In this context, several parameters affecting MEEKC separation were studied, including the dispersion agents of MWNTs, MWNTs content, oil type, SDS concentration, and the type and concentration of cosurfactant. Compared with conventional MEEKC, the addition of all types of MWNTs dispersions using single or mixed cationic surfactant solutions in running buffers was especially useful for improving the separation of solutes tested, as they influenced the partitioning between the oil droplets and aqueous phase due to the exceptional electrical properties and large surface areas of MWNTs. Use of cationic surfactant‐coated MWNTs (6.4 μg/mL) as the additive in a microemulsion buffer (0.5% octanol, 2.8% SDS, 5.8% isopropanol, and 5 mM borate buffer) yielded complete resolution of 13 analytes. The proposed method has been successfully applied for the detection and quantification of the studied compounds in a complex matrix sample (Compound Xueshuantong capsule).  相似文献   

5.
Kahle KA  Foley JP 《Electrophoresis》2006,27(4):896-904
In this study, the combination of two chiral components in a microemulsion formulation for the separation of enantiomers via microemulsion EKC (MEEKC) was successfully accomplished. Previous publications of chiral microemulsions have utilized only one chiral entity; the surfactant, cosurfactant, or oil was chiral. This is the first study, to date, of the effects of using two chiral species in a single pseudostationary phase (PSP). The chiral surfactant dodecoxycarbonylvaline (DDCV) was used in conjunction with the chiral cosurfactant S-2-hexanol. Ethyl acetate was incorporated as the oil core of the microemulsion and the buffer was 50 mM phosphate at a pH of 7. Additionally, a microemulsion prepared with racemic 2-hexanol was used for comparison to a previous DDCV microemulsion and as a baseline for the newly formulated dual chiral microemulsion. The efficiencies, resolutions, and enantioselectivities for the S-2-hexanol, racemic 2-hexanol, and original 1-butanol DDCV microemulsions are compared. The hexanol-based PSPs provide improved efficiencies and resolutions. To evaluate the combination of each DDCV enantiomer (R and S) with S-2-hexanol, changes in Gibb's free energy were calculated. A synergistic effect was found when two chiral components were combined to form a microemulsion.  相似文献   

6.
Huang HY  Lien WC  Huang IY 《Electrophoresis》2006,27(16):3202-3209
In this study, anion-selective exhaustive injection-sweeping (ASEI-sweeping) technique, which is a selective on-line sample concentration technique, was first proposed in microemulsion electrokinetic chromatography (MEEKC) for analyses of eight acidic phenolic compounds. In contrast to a capillary that is typically filled with nonmicellar background solution in conventional ASEI-sweeping MEKC method, in the proposed ASEI-sweeping MEEKC method, a capillary is filled with a low pH microemulsion solution (pH 2.0), and then with a short acid plug (pH 2.0, 1.9 cm) before field-amplified sample injection. This proposed design has two functions. First, the microemulsion solution that is present at the front of capillary column is able to avoid phase separation of microemulsion solution during MEEKC separation. Second, the presence of the short acid plug would effectively limit the partition behavior of acid analytes with the oil droplets in the microemulsion during field-amplified sample injection; otherwise, the stacking effect of acid analytes would be markedly reduced. This optimal ASEI-sweeping MEEKC method afforded about 96,000-fold to 238,000-fold increases in detection sensitivity in terms of peak areas without any separation efficiency loss when compared to normal MEEKC separation. Furthermore, trace levels (about 3 ng/g) of gallic acid and catechin in foods were also detected successfully by the proposed ASEI-sweeping MEEKC technique.  相似文献   

7.
Marsh A  Clark B  Broderick M  Power J  Donegan S  Altria K 《Electrophoresis》2004,25(23-24):3970-3980
Microemulsion electrokinetic chromatography (MEEKC) is an electrodriven separation technique. Separations are typically achieved using oil-in-water microemulsions, which are composed of nanometre-sized droplets of oil suspended in aqueous buffer. The oil droplets are coated in surfactant molecules and the system is stabilised by the addition of a short-chain alcohol cosurfactant. The novel use of water-in-oil microemulsions for MEEKC separations has also been investigated recently. This report summarises the different microemulsion types and compositions used to-date and their applications with a focus on recent papers (2002-2004). The effects of key operating variables (pH, surfactant, cosurfactant, oil phase, buffer, additives, temperature, organic modifier) and methodology techniques are described.  相似文献   

8.
It is of great significance to develop an appropriate water-in-ionic liquid (W/IL) microemulsion suitable for the expression of the catalytic activity of a given enzyme. In this paper, the phase diagram of a new AOT/Triton X-100/H(2)O/[Bmim][PF(6)] pseudo ternary system is presented. With the aid of nonionic surfactant Triton X-100, AOT could be dissolved in hydrophobic ionic liquid [Bmim][PF(6)], forming a large single phase microemulsion region. The water-in-[Bmim][PF(6)] (W/IL) microemulsion domain was identified electrochemically by using K(3)Fe(CN)(6) as a probe. The existence of W/IL microemulsions was demonstrated spectrophotometrically by using CoCl(2) as a probe. New evidences from the FTIR spectroscopic study, which was first introduced to the W/IL microemulsion by substituting D(2)O for H(2)O to eliminate the spectral interference, demonstrated that there existed bulk water at larger ω(0) values (ω(0) was defined as the molar ratio of water to the total surfactant) in the W/IL microemulsion, which had remained unclear before. In addition to the inorganic salts, biomacromolecule laccase could be solubilized in the W/IL microemulsion. The laccase hosted in the microemulsion exhibited a catalytic activity and the activity could be regulated by the composition of the interfacial membrane.  相似文献   

9.
Sample stacking for the analysis of catechins by microemulsion EKC   总被引:1,自引:0,他引:1  
Huang HY  Huang IY  Liang HH  Lee S 《Electrophoresis》2007,28(11):1735-1743
In this study, an on-line concentration method, ASEI (anion-selective exhaustive injection)-sweeping technology which was coupled with microemulsion EKC (MEEKC), was used to analyze and detect six catechins ((-)-epicatechin, (+)-catechin, (-)-epigallocatechin gallate, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-gallocatechin). In addition to the effects of the buffer pH and electrolyte concentration on stacking, the compositions of microemulsion (types of oil phase, and types and levels of cosurfactant) also dominated the stacking effect of catechins. In MEEKC, the effect of the type of oil in microemulsion on separation mechanism is often unclear. This study had demonstrated that the oil type in microemulsion indeed altered the affinity of oil droplets with analytes. Finally, this proposed ASEI-sweeping MEEKC method was able to detect trace level of catechins in food products that was not previously possible by a normal MEEKC method.  相似文献   

10.
Hua Yang  Yao Ding  Ping Li 《Electrophoresis》2013,34(9-10):1273-1294
Microemulsion electrokinetic chromatography (MEEKC) is a CE separation technique, which utilizes buffered microemulsions as the separation media. In the past two decades, MEEKC has blossomed into a powerful separation technique for the analysis of a wide range of compounds. Pseudostationary phase composition is so critical to successful resolution in EKC, and several variables could be optimized including surfactant/co‐surfactant/oil type and concentration, buffer content, and pH value. Additionally, MEEKC coupled with online sample preconcentration approaches could significantly improve the detection sensitivity. This review comprehensively describes the development of MEEKC from the period 1991 to 2012. Areas covered include basic theory, microemulsion composition, improving resolution and enhancing sensitivity methods, detection techniques, and applications of MEEKC.  相似文献   

11.
Recent applications of microemulsion electrokinetic chromatography   总被引:1,自引:0,他引:1  
Huie CW 《Electrophoresis》2006,27(1):60-75
Compared to MEKC, the presence of a water-immiscible oil phase in the microemulsion droplets of microemulsion EKC (MEEKC) gives rise to some special properties, such as enhanced solubilization capacity and enlarged migration window, which could allow for the improved separation of various hydrophobic and hydrophilic compounds, with reduced sample pretreatment steps, unique selectivities and/or higher efficiencies. Typically, stable and optically clear oil-in-water microemulsions containing a surfactant (SDS), oil (octane or heptane), and cosurfactant (1-butanol) in phosphate buffer are employed as separation media in conventional MEEKC. However, in recent years, the applicability of reverse MEEKC (water-in-oil microemulsions) has also been demonstrated, such as for the enhanced separation of highly hydrophobic substances. Also, during the past few years, the development and application of MEEKC for the separation of chiral molecules has been expanded, based on the use of enantioselective microemulsions that contained a chiral surfactant or chiral alcohol. On the other hand, the application of MEEKC for the characterization of the lipophilicity of chemical substances remains an active and important area of research, such as the use of multiplex MEEKC for the high-throughput determination of partition coefficients (log P values) of pharmaceutical compounds. In this review, recent applications of MEEKC (covering the period from 2003 to 2005) are reported. Emphases are placed on the discussion of MEEKC in the separation of chiral molecules and highly hydrophobic substances, as well as in the determination of partition coefficients, followed by a survey of recent applications of MEEKC in the analysis of pharmaceuticals, cosmetics and health-care products, biological and environmental compounds, plant materials, and foods.  相似文献   

12.
Klampfl CW 《Electrophoresis》2003,24(10):1537-1543
The contribution of organic solvents to the mechanisms responsible for separation in microemulsion electrokinetic chromatography (MEEKC) is reviewed. Organic solvents are needed as constituents of microemulsions for a series of reasons. (i). A water-immiscible organic substance is used to form the actual oil phase of the microemulsion, (ii). a less hydrophobic solvent is commonly employed as a so-called co-surfactant, and (iii). in many cases an organic modifier is added to influence the solubility of the analytes in the aqueous phase of the microemulsion. All these organic solvents do not only participate in the separation in their actual function, but also interact with each other and the analytes. Variations in separation selectivities triggered by changes in the nature and/or concentration of these organic solvents present in microemulsions suitable for MEEKC are discussed in this work.  相似文献   

13.
In this study, microemulsions of the chiral surfactant polysodium N-undecenoyl-D-valinate (poly-D-SUV) was utilized for enantiomeric separation by investigating two approaches using polymeric chiral surfactant in microemulsion electrokinetic chromatography (MEEKC). In the first approach, poly-D-SUV was used as an emulsifier surfactant along with 1-butanol and n-heptane. Enantioseparation of anionic or partially anionic binaphthyl derivatives, anionic barbiturates, and cationic paveroline derivatives were achieved by varying the mass fraction of 1-butanol, n-heptane and poly-D-SUV. For anionic or partially anionic analytes, relatively lower mass fractions of n-heptane, and poly-D-SUV were found to give optimum chiral separations as compared to that for cationic solutes. In the second approach, the chiral microemulsion polymer was prepared by polymerizing mixtures of 3.50% (w/w) of sodium N-undecenoyl-D-valinate (D-SUV) and 0.82% (w/w) of n-heptane (core phase) at varying concentration of 1-butanol. After polymerization, the n-heptane and 1-butanol were removed to yield solvent free microemulsion polymers (MPs) which were then utilized for the separation of anionic binaphthyl derivatives and anionic barbiturates. When MPs of D-SUV were utilized for chiral separation, 1.00% (w/w) 1-butanol and 3.50% (w/w) 1-butanol was optimum for enantioseparation of (+/-)-BNP and (+/-)-BOH, respectively. On the other hand, for anionic (+/-)-barbiturates very low concentration of butanol (0.25%, w/w) provided optimum resolution. Compared with micellar electrokinetic chromatography (MEKC), the use of micelle polymers or microemulsion polymers in MEEKC showed dramatic enhancement for resolution of (+/-)-BNP, while this enhancement was less dramatic for other binaphthyls [(+/-)-BOH, (+/-)-BNA] as well as for (+/-)-barbiturates and (+/-)-paveroline derivatives. However, higher separation efficiency of the enantiomers was always observed with MEEKC than in MEKC.  相似文献   

14.
Microemulsion electrokinetic chromatography (MEEKC) has been applied to the separation of some phenolic antioxidants [Irganox 1024, Irganox 1035, Irganox 1076, Irganox 1010, Irganox 1330, Irgafos 138, Irganox 168 and 2,6-di-tert.-butyl-4-methylphenol (BHT)]. Due to the extremely hydrophobic nature of these analytes, they could not be separated using standard MEEKC conditions and two alternative approaches were investigated. Using an acidic buffer (phosphate, pH 2.5) to effectively suppress the electroosmotic flow, the addition of 2-propanol to the aqueous phase of the microemulsion buffer to improve partitioning of the analytes, and a negative separation voltage, separation of five of the analytes in under 10 min was possible. The second approach, using a basic buffer (borate, pH 9.2) and a positive separation voltage resulted in complete resolution of all eight analytes. A mixed surfactant system comprising the anionic sodium dodecyl sulfate (SDS) and neutral Brij 35 was used to reduce the overall charge and with it the mobility of the droplets, and hence the separation time. Using an optimised MEEKC buffer consisting of 2.25% (w/w) SDS, 0.75% (w/w) Brij 35, 0.8% (w/w) n-octane, 6.6% (w/w) 1-butanol, 25% (w/w) 2-propanol and 64.6% (w/w) 10 mM borate buffer (pH 9.2) the eight target analytes were baseline separated in under 25 min. For these analytes, MEEKC was found to be superior to micellar electrokinetic chromatography in every respect. Specifically, the solubility of the analytes was better, the selectivity was more favourable, the analysis time was shorter and the separation efficiency was up to 72% higher when using the MEEKC method. Detection limits from 5.4 to 26 microg/ml were obtained and the calibration plot was linear over more than one order of magnitude. The optimised method could be applied to the determination of Irganox 1330 and Irganox 1010 in polypropylene.  相似文献   

15.
In this work, the influences of ionic liquid (IL) as a modifier on microemulsion microstructure and separation performance in MEEKC were investigated. Experimental results showed that synergetic effect between IL 1‐butyl‐3‐methylimidazolium tetrafluoro‐borate (BmimBF4) and surfactant SDS gave a decreased CMC. With increment of IL in microemulsion, negative ζ potential of the microdroplets reduced gradually. The influence of IL on the dimensions of microdroplet was complicated. At BmimBF4 less than 8 mM, IL made microemulsion droplet smaller in size. While at BmimBF4 more than 10 mM, the size increased and reached to a maximum value at 12 mM, where the microdroplets were larger than that without IL. After that, the micreodroplet size decreased again. Relative fluorescence intensity of the first vibration band of pyrene to the third one (I1/I3) enhanced as IL was added to microemulsion, which indicated that this addition increased environmental polarity in the inner core of microdroplets. Prednisone, hydrocortisone, prednisolone, hydrocortisone acetate, cortisone acetate, prednisolone acetate, and triamcinolone acetonide were analyzed with MEEKC modified with IL to evaluate the separation performance. Cortisone acetate and prednisolone acetate could not be separated at all in typical microemulsion. The seven analytes could be separated by the addition of 10 mM BmimBF4 into the microemulsion system. The method has been used for analysis of corticosteroids in cosmetic samples with simple extraction; the recoveries for seven analytes were between 86 and 114%. This method provides accuracy, reproducibility, pretreatment simplicity, and could be applied to the quality control of cosmetics.  相似文献   

16.
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)为表面活性剂,在甲基丙烯酸缩水甘油酯(GMA)和甲基丙烯酸甲酯(MMA)混合物为油相的反相微乳液体系中合成了AgCl纳米粒子,然后通过微乳液聚合制备了AgCl/GMA-MMA-AMPS共聚物有机-无机杂化膜,并用于苯/环己烷混合物的渗透气化分离.利用紫外-可见光谱及透射电子显...  相似文献   

17.
倪鹏a 侯万国 a  b 《中国化学》2008,26(7):1335-1338
通常微乳液一般由四个组分构成:水相、油相、表面活性剂和助表面活性剂。本文报道了一种不含表面活性剂的微乳液体系(简称SFME),由呋喃甲醛(油相),水和N,N-二甲基甲酰胺(DMF)三组分构成,不含传统的表面活性剂。对其相行为进行了研究,发现存在一个单相微乳液区和一个两相平衡区。采用电导率法和冷冻蚀刻电镜(FF-TEM)考察了单相区域中微乳液的微结构,结果表明可分为油包水(O/W)、双连续(BC)和水包油(W/O)三个区域。液滴直径介于40-70nm。  相似文献   

18.
Recent advances in the development and application of microemulsion EKC   总被引:1,自引:0,他引:1  
Microemulsion EKC (MEEKC) is an electrodriven separation technique. Separations are typically achieved using oil-in-water microemulsions, which are composed of nanometre-sized oil droplets suspended in an aqueous buffer. The droplets are stabilised by a surfactant and a cosurfactant. The novel use of water-in-oil microemulsions has also been investigated. This review summarises the advances in the development of MEEKC separations and also the different areas of application including determination of log P values, pharmaceutical applications, chiral analysis, natural products and bioanalytical separations and the use of new methods such as multiplexed MEEKC and high speed MEEKC. Recent applications (2004-2006) are tabulated for each area with microemulsion composition details.  相似文献   

19.
A microemulsion electrokinetic chromatography (MEEKC) method was developed to analyze and detect eight food colorants (tartrazine, fast green FCF, brilliant blue FCF, allura red AC, indigo carmine, sunset yellow FCF, new coccine, and carminic acid), which are commonly used as food additives in various food products. The effects of sodium dodecyl sulfate (SDS) surfactant, organic modifier, cosurfactant, and oil were examined in order to optimize the separation. The amount of organic modifier (acetonitrile) and SDS surfactant were determined as apparent influences on the separation resolution while the type of oil and cosurfactant rarely affected the separation selectivity of the eight colorants. A highly efficient MEEKC separation method, where the eight colorants were separated with baseline resolution within 14 min, was achieved by using a microemulsion solution of pH 2.0 containing 3.31% SDS, 0.81% octane, 6.61% 1-butanol, and 10% acetonitrile. This optimal MEEKC method has a higher separation efficiency and similar detection limit when compared to conventional capillary electrophoresis (CE) method. Furthermore, a sample pretreatment is rarely needed when this MEEKC technique is used to analyze colorants in food products, whereas a suitable sample pretreatment (for example solid-phase extraction) has to be employed prior to CE separation in order to eliminate matrix interferences resulting from the constituents of the food sample.  相似文献   

20.
Preliminary Study on the Use of Water-in-Oil Microemulsion Eluents in HPLC   总被引:1,自引:0,他引:1  
This paper describes the use of water-in-oil (W/O) microemulsion eluents to achieve unique normal phase HPLC separations. The effects of varying the oil type, co-surfactant, surfactant, use of mixed surfactant and water concentration upon the chromatographic performance was assessed. Other parameters such as temperature and flow rate were also investigated. An optimised set of W/O microemulsion HPLC (MELC) operating conditions was then applied to the separation of a range of acids, bases and neutral compounds. The more water soluble compounds were more highly retained. W/O MELC was found to be especially suitable for determination of water insoluble compounds. The drug content in bumetanide tablets was determined by W/O MELC with good linearity and accuracy. The solubilising ability of the W/O microemulsion reduced sample preparation (precipitation and extraction) requirements compared to conventional HPLC. The results obtained compared well with those obtained by a validated reverse phase HPLC method. It is recommended that W/O MELC should be considered for routine applications, especially for the analysis of water insoluble compounds in complex sample matrices. Further research is recommended to more definitely assess the operating parameters of W/O MELC and to determine other applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号