首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developing accurate models to simulate the interaction between pneumatic tires and unprepared terrain is a demanding task. Such tire–terrain contact models are often used to analyze the mobility of a wheeled vehicle on a given type of soil, or to predict the vehicle performance under specified operational conditions (as related to the vehicle and tires, as well as to the running support). Due to the complex nature of the interaction between a tire and off-road environment, one usually needs to make simplifying assumptions when modeling such an interaction. It is often assumed that the tire–terrain interaction can be captured using a deterministic approach, which means that one assumes fixed values for several vehicle or tire parameters, and expects exact responses from the system. While this is rarely the case in real life, it is nevertheless a necessary step in the modeling process of a deterministic framework. In reality, the external excitations affecting the system, as well as the values of the vehicle and terrain parameters, do not have fixed values, but vary in time or space. Thus, although a deterministic model may capture the response of the system given one set of deterministic values for the system parameters, inputs, etc., this is in fact only one possible realization of the multitude of responses that could occur in reality. The goal of our study is to develop a mathematically sound methodology to improve the prediction of the tire–snow interaction by considering the variability of snow depth and snow density, which will lead to a significantly better understanding and a more realistic representation of tire–snow interaction. We constructed stochastic snow models using a polynomial chaos approach developed at Virginia Tech, to account for the variability of snow depth and of snow density. The stochastic tire–snow models developed are based on the extension of two representative deterministic tire–snow interaction models developed at the University of Alaska, including the pressure–stress deterministic model and the hybrid (on-road extended for off-road) deterministic model. Case studies of a select combination of uncertainties were conducted to quantify the uncertainties of the interfacial forces, sinkage, entry angle, and the friction ellipses as a function of wheel load, longitudinal slip, and slip angle. The simulation results of the stochastic pressure–stress model and the stochastic hybrid model are compared and analyzed to identify the most convenient tire design stage for which they are more suitable. The computational efficiency of the two models is also discussed.  相似文献   

2.
A method and the results of calculating the parameters of two-phase monodisperse and polydisperse flows in a Laval nozzle are presented. A general particle-wall interaction model based on the results of experimental research is used. It is shown that taking the real characteristics of the interaction between the condensate and the walls into account makes it possible to determine a number of important flow parameters with much greater accuracy.deceasedTranslated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 79–85, March–April, 1990.  相似文献   

3.
In addition to obtaining solutions by the perturbation method it is shown that in the case of nonlinear wave interaction given a certain relationship between the parameters of the interacting waves steady-state compound waves may exist.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 146–154, May–June, 1989.  相似文献   

4.
A solution of the problem of flow in a channel with nonconducting walls for a small magnetohydrodynamic interaction parameter N is obtained by numerical methods. In the 0–10 range of variation of the Hall and magnetic Reynolds number parameters the distributions of the electrical parameters and the average (over the cross section) and local gasdynamic flow parameters are computed for two different geometries of the applied magnetic field. It is shown that an increase in the Hall and magnetic Reynolds number parameters is accompanied by a diminution in the Joule dissipation and the perturbation of the average (over the cross section) gasdynamic flow characteristics. It is disclosed that the distribution of the gasdynamic parameters over the channel cross section is extremely nonmonotonic in the end current zones.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 20–29, July–August, 1970.In conclusion, the author is grateful to A. B. Vatazhin for useful comments and constant attention to the research and to I. U. Tolmach for valuable comments.  相似文献   

5.
In [1, 2] values are established for the parameters of a compression wave with a triangular pressure variation such that when the wave interacts with a two-phase gas-liquid medium it can produce nonstationary combustion. More complicated to study, but of greater practical interest, is the interaction of longitudinal compression waves with a burning two-phase medium.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 119–122, January–February, 1972.  相似文献   

6.
7.
G. N. Dudin 《Fluid Dynamics》1995,30(4):615-620
Hypersonic viscous perfect gas flow past a planar delta wing in the viscous-inviscid interaction regime is considered. The effect of the yaw angle on the parameters of the laminar boundary layer on the cold wing and the formation of subcritical and supercritical flow regions is studied.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 151–158, July–August, 1995.  相似文献   

8.
The flow formed in the neighborhood of the discontinuity intersection point when shock waves collide at a nonzero angle is studied. The investigation can be directly applied to problems of shock wave interaction in the interplanetary plasma [9–12]. In magnetohydrodynamics the nature of the flow and its investigation are much more complex than in gas dynamics because of the greater number of possible waves and governing parameters.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 132–143, May–June, 1991.  相似文献   

9.
The drill-string dynamics is difficult to predict due to the non-linearities and uncertainties involved in the problem. In this paper a stochastic computational model is proposed to model uncertainties in the bit–rock interaction model. To do so, a new strategy that uses the non-parametric probabilistic approach is developed to take into account model uncertainties in the bit–rock non-linear interaction model. The mean model considers the main forces applied to the column such as the bit–rock interaction, the fluid–structure interaction and the impact forces. The non-linear Timoshenko beam theory is used and the non-linear dynamical equations are discretized by means of the finite element method.  相似文献   

10.
The interaction of plane waves coming from infinity with an infinitely long elastic rod floating on the surface of a liquid is considered. The liquid is assumed to be ideal and have infinite depth. It is assumed that the rod cannot become separated from the liquid. The parameters of the waves that pass through the rod and are reflected from it are determined, and the force factors in the transverse sections of the rod are found.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 62–67, September–October, 1980.  相似文献   

11.
The axisymmetric interaction between a supersonic jet with a finite expansion ratio and a barrier is accompanied by the formation of complex sub- and supersonic flow in a shock layer whose thickness depends on the parameters of the jet and the position of the barrier. The main relationships of the interaction process have been established experimentally ([1–3] and others) and individual results of numerical calculations of such flows are known [4]. An analytical investigation of the parameters in the shock layer formed ahead of a plane barrier when an underexpanded jet impinges on it is presented below. The results of [5], where the region near the axis of a shock layer of arbitrary thickness is analyzed within the framework of a model of flow with a constant density, is placed at the basis of the analysis.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 63–70, September–October, 1978.The author thanks Yu. M. Tsirkunov for useful discussions.  相似文献   

12.
In a number of cases of supersonic flow past bodies with recesses pulsations in the flow arise [1–3]. Experiments [4, 5] indicate that stabilization of the steady supersonic flow past the body with a recess on which a shock wave is incident takes place after a series of oscillations of the bow wave. Numerical calculation of the interaction of a supersonic jet with a cylindrical cavity [6] reveals that damped pressure pulsations arise inside the cavity if the jet is homogeneous, and undamped pulsations it is inhomogeneous. The authors explain the damping of the pulsations by the influence of artificial viscosity. This paper investigates experimentally and theoretically (by numerical methods) the oscillations of the bow shock wave and the parameters of the flow behind it in the case of unsteady reflection of a shock wave from a body with a cylindrical recess turned towards the flow. The problem is posed as follows. A plane shock wave with constant parameters impinges on a cylinder with a cavity. The unsteady flow originating from this interaction is investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 199–202, September–October, 1984.  相似文献   

13.
The propagation of long waves in an incompressible conducting liquid saturated with nonconducting gas bubbles is considered on the basis of the equations of magnetohydrodynamics of a homogeneous gas-liquid medium. It is shown that the propagation of weakly nonlinear MHD waves in such a medium is described by the Burgers-Korteweg-de Vries (BKdV) equation. The influence of MHD interaction effects on the parameters of fast and slow weak magnetoacoustic shock waves is investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 142–147, March–April, 1991.  相似文献   

14.
The regular interaction of two plane MHD shock wave fronts overtaking one another at an arbitrary angle is investigated within the framework of the ideal magnetohydrodynamic model. The self-similar solution in which all the discontinuities are explicitly distinguished is obtained by means of a computer. The solution is analyzed over a wide range of the key parameters.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 127–143, November–December, 1995.  相似文献   

15.
This paper reports results from experimental studies of the formation of secondary drops during impact interaction of a drop with a liquid surface. The experimental data are compared with analytical estimates of the parameters of the cavern formed and the Rayleigh column.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 55–62, January–February, 2005.  相似文献   

16.
The results are given of an experimental determination of the parameters of jets out of rectangular nozzles. The distributions of the mean velocity and an impurity concentration were measured. The rearrangement of the jet flow associated with the three-dimensional structure of the jet and interaction of the jet and a screen was investigated. A model that describes the occurrence of a pressure difference and curvature of the jet trajectory when it interacts with a screen is proposed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 39–48, July–August, 1979.  相似文献   

17.
The self-similar problem of the oblique interaction between a fast shock wave and a tangential discontinuity is solved within the framework of the ideal magnetohydrodynamic model. The constraints on the initial parameters necessary for the existence of a regular solution are found. Various feasible wave flow patterns are found. In the space of the governing parameters boundaries between the solutions of various types are constructed. The basic features of the developing flows and their dependence on the initial data are clarified.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 159–168, March–April, 1995.  相似文献   

18.
The nonlinear processes of development of instability in an unsteady subsonic viscous gas flow in a plane channel with a sudden expansion are investigated numerically with allowance for acoustico-vortex interaction over a broad interval of the characteristic parameters. Effects associated with the acoustic self-excitation of the jet flowing into the wider part of the channel are determined. Approximate relations are obtained for the resonance conditions of self-excitation. The effect of the inlet mean-velocity profiles on the evolution of the flow is estimated. The processes of formation and subsequent interaction of the coherent structures are analyzed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 32–41, July–August, 1988.  相似文献   

19.
G. A. Al'ev 《Fluid Dynamics》1990,25(1):160-162
A study is made of the three-dimensional problem of the interaction between a disk that enters water asymmetrically and a shock wave that is moving toward the disk. The water is assumed to be a perfect compressible liquid and the flow adiabatic. The changes in the flow parameters and the state are determined by numerical integration of the equations that describe the flow. A three-dimensional version of the finite-difference scheme of [1] is used in accordance with the method of [2]. The influence of the intensity of the shock wave on the drag coefficient of the disk and the shape of the free surface is investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 185–187, January–February, 1990.  相似文献   

20.
An axisymmetric laminar separated flow in the vicinity of a coneflare model is studied experimentally and numerically for a Mach number M = 6. The distributions of pressure and Stanton numbers along the model surface and velocity profiles in the region of shock wave–boundary layer interaction are measured and compared with the calculated data. The influence of the laminar–turbulent transition on flow parameters is studied numerically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号