首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
测定了聚氯乙烯(PVC)-丁腈橡胶(NBR-29)-氯丁橡胶(CR)三元共混物的冲击性能和应力-应变行为,用动态力学分析、扫描电镜和透射电镜研究了共混物的相容性和形态结构,结果表明,NBR-29对PVC,CR有良好的增容作用,三元共混物是部分相容的二相体系,具有良好的抗冲击性能。  相似文献   

2.
用反相色谱研究了聚氯乙烯与聚氧乙烯的相容性,发现其共混物的经保留体积Vg23具有重量加和性,表明共混物可能发生了相分离,导出了相分离体系聚合物相互作用参数X23的近似关系式:x23=(x12-x13)^2/2,由此式可以解释x23对探针种类的依赖性,聚氯乙烯和聚氧乙烯共混体系的反相色谱实验结果基本符合这一关系式。  相似文献   

3.
4.
5.
聚氯乙烯(PVC)用作阻尼材料时多作成与高聚物的共混物,也有采用IPN的方法改善PVC的阻尼性能,前巳报导PVC-丁腈羟低聚物共混物有较佳的阻尼性质。本工作考察了PVC-PIB(聚异丁烯)组成及添加剂对共混物力学性能和动态力学性质的影响。  相似文献   

6.
研究了非晶的聚氯乙烯(PVC)/丁腈橡胶(NBR)共混物脆韧转变特性,主要包括形态参数─—分散相粒径(d)、体积分数()、特别是分散相粒径分布(б)对其脆动转变性能的影响.结果表明,当d<临界值(d)或>临界值()时,PVC/NBR产生脆韧转变.而且dC随。的增大而减小;随б的增大而增大。增大不利于增韧和脆韧转变的发生。也是影响聚合物共混物脆韧转变的重要形态参数,理论预示与实验结果很好相符.结果并给出PVC/NBR共混物的冲击韧性也是分散相粒间基体层厚度(T)的单参数函数.当T>T时,共混物为脆性;当T≤T时,共混物韧性剧增成为超韧合金.虽然,以分子链结构参数分类,PVC介于准韧性和脆性聚合物之间.结果证实,准韧性聚合物共混物脆韧转变的Tc判据仍然适用于PVC/NBR共混物.  相似文献   

7.
界面粘结对聚氯乙烯/丁腈橡胶共混物脆韧转变的影响   总被引:6,自引:1,他引:6  
应用丙烯腈(AN)含量不同的丁腈橡胶(NBR)与聚氯乙烯(PVC)共混,研究了界面粘结对PVC/NBR共混物脆韧转变的影响.结果表明:当基体层度T相等时,过强的界面粘结,使PVC/NBR共混物的冲击强度降低,并且其产生脆韧转变的临界基体层厚度Tc减小.界面粘结对于聚合物共混物的增韧行为具有直接的影响.损伤区分析给出:随着界面粘结强度增大,空洞化过程受阻,减弱能量的耗散,并且不利于诱导剪切屈服损伤的产生,因而不利于增韧;但是界面粘强度过小,意味着共混物的相容性太差,致使分散相粒径过大,也不利于增韧.所以对增韧来讲,共混物的界面粘结强度存在一个最佳范围.  相似文献   

8.
PVC/ACR共混物微观结构与性能   总被引:3,自引:1,他引:3  
本文研究了聚氯乙烯/丙烯酸酯类共聚物(PVC/ACR)共混物的应力-应变行为和冲击强度对ACR 用量的依赖关系。ACR对 PVC有良好的增韧作用,提高了PVC抗冲击性能。考察了三盐基性硫酸铅和硬脂酸钡-硬脂酸镉稳定剂对共混体系的影响,实验结果说明不同的热稳定体系对ACR改性PVC的效果有差别。动态力学性能测定结果表明PVC/ACR共混物存在两个玻璃化转变温度,证明PVC与ACR不相容性;而两个转变温度随共混物组成改变而变化,说明PVC与ACR之间存在着相互作用,PVC/ACR为部分相容体系。通过透射电子显微镜观察PVC/ACR共混物的微观结构形态表明:PVC与 ACR为两相体系,ACR呈粒状分布在PVC连续相中。但是,采用硬脂酸钡-硬脂酸镉稳定体系时,随着ACR用量增加,ACR的分散形态由粒状分散逐渐形成网络结构形态,与此相对应的共混物具有更好的抗冲击性能。  相似文献   

9.
本文对高密度聚乙烯(HDPE)/丁腈橡胶(NBR)共混物的组成、结构、性能和相互作用进行了研究。实验结果表明:少量的NBR能大幅度提高HDPE的冲击韧性和耐环境应力开裂性能。WAXD显示NBR在共混物中呈现一定程度的取向;TEM显示NBR能以平均粒径为0.2 μm的尺寸分散于HDPE中,且形成较牢固的结合;DMA分析发现HDPE与NBR间相互作用而引起α、γ、T_(?)转变温度发生变化。本文对HDPE与NBR相互作用的机理进行了讨论。  相似文献   

10.
用反相色谱研究了聚氯乙烯与聚氧乙烯的相容性,发现其共混物的比保留体积Vg23具有重量加和性,表明共混物可能发生了相分离。导出了相分离体系聚合物相互作用参数X23的近似关系式:X23=(X12-X13)2/2,由此式可以解释X23对探针种类的依赖性。聚氯乙烯和聚氧乙烯共混体系的反相色谱实验结果基本符合这一关系式。  相似文献   

11.
固相法氯化聚乙烯对PVC/LLDPE共混体系性能和形态的影响   总被引:2,自引:0,他引:2  
何培新  黄鹤 《应用化学》1996,13(5):52-55
采用固相法氯化聚乙烯(CPE)对聚氯乙烯/线型低密度聚乙烯(PVC/LLDPE)共混体系进行增容改性。扫描电子显微镜、透射电子显微镜、动态力学分析和力学性能测试结果表明,CPE对PVC/LLDPE共混体系具有很好的增容作用。  相似文献   

12.
采用DCS、POM、SEM及力学性能测试,研究了不同对羟基苯甲醛和对苯二甲酸乙二醇酯含量的液晶共聚酯PET40/PHB60(LCP1)和PET30/PHB70(LCP2)的共混物与尼龙1010为基体的三元混体系。结果表明,液晶共混物的力学性能比单组分有明显提高,通过改变混合液晶中两组分的含量可调节其加工温度与粘度,从而满足了与尼龙1010共混的加工窗口要求。混合液晶的加入对尼龙1010的结晶与熔融  相似文献   

13.
采用流变学方法研究了双组分加成型硅橡胶在不同聚氯乙烯(PVC)表皮上的固化动力学,并利用红外光谱、核磁共振波谱、电感耦合等离子体质谱仪等手段分析了PVC表皮成分,以确定导致双组分加成型硅橡胶不固化的具体原因。 结果表明,PVC表皮中导致硅橡胶不固化的主要元素为P元素。 在固定硅橡胶厚度为1 mm的情况下,当PVC表皮中的P元素质量分数低于3×10-3%时,浇注在其上的双组分加成型硅橡胶依然能固化;而当PVC表皮中的P元素质量分数超过约2.4×10-2%时,虽然浇注在其上的双组分加成型硅橡胶的中间层依然能固化,但与PVC表皮接触部分的硅橡胶不固化,且不固化层厚度随P元素质量分数增加而增加。 本文还研究了在P元素质量分数低于3×10-3%的PVC表皮上,降低硅橡胶厚度至微米级时的固化行为,在P元素质量分数低于3×10-3%的PVC表皮上,当硅橡胶厚度低于2 μm时,硅橡胶出现不完全固化现象。 双组分加成型硅橡胶在含有P元素的PVC表皮表面的固化行为主要是由硅橡胶样品中铂催化剂总含量及PVC表皮中的P元素含量确定的,同时也会受到双组分加成型硅橡胶反应速率以及铂催化剂、P元素在硅橡胶中的扩散速率的影响。  相似文献   

14.
15.
考察了酚醛树脂(Novolak)的增容作用对聚甲醛(POM)/丁腈橡胶(NBR)共混物的韧性、结晶形态和亚微相态的影响.实验结果表明,POM与NBR不相容,直接共混不能提高POM的韧性;添加Novolak后,当NBR质量分数为40%时共混物发生“脆-韧”转变.POM/NBR共混物中POM球晶尺寸大,易形成应力集中点,导致增韧效果不佳;Novolak可通过与POM的分子链间相互作用,改变POM分子链固有的规程和排列方式,使球晶显著减小.亚微相态显示,POM/NBR呈现“海-岛”结构相态,NBR在基体中分散性很差;添加Novolak可提高NBR在基体中的分散性;当NBR质量分数达到40%时,NBR在基体中呈现带状网络结构.网带结构能够终止受外力作用而在基体中产生的银纹和剪切屈服,增加了共混物的破裂能,从而使共混物的韧性显著提高.  相似文献   

16.
The phase behavior of several polycarbonate homopolymers and copolymers blended with PVC and chlorinated PVCs (CPVCs) has been investigated. Tetrachlorobisphenol-A polycarbonate (TCPC) is miscible in all proportions with PVC and CPVCs containing up to70.2 wt% chlorine. CPVCs having chlorine contents greater than 70.2% (by weight) are immiscible with TCPC. Tetrabromobisphenol-A polycarbonate (TBPC) exhibits phase mixing with PVC and CPVCs; however, the high Tg of this polycarbonate (260°C) prevents adequate investigation of equilibrium phase behavior. Bisphenol-A polycarbonate (BPC), tetramethylbisphenol-A polycarbonate (TMPC), and hexafluorobisphenol-A polycarbonate (HFPC) form two-phase mixtures with the vinyl polymers. Microstructural differences in the CPVCs due to chlorination method (solution chlorination vs. slurry chlorination) have no effect on the miscibility results. Miscibility was observed in several copolycarbonate/CPVC blends and was found to be dependent on copolymer composition. Using a binary interaction, mean-field theory, segmental interaction parameters were estimated for repeat unit interactions. Based on the estimated interaction parameters, miscibility in these blends is primarily the result of intramolecular repulsive effects, rather than strong intermolecular attractive forces.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

17.
Inrecentyears,thenewsedricrystallinepolymersyndiotacticp0lystyrene(sPS)hasat-ITactedmuchattentionduetoitsg0odchendcalresistanceandenhancedmechanicalperformanceatelevatedtemPeratUre.'H0wever,itexhibitshighbrittlenessandpoorimPact-resistanceandtCar-resistance.2Therefore,itisnecessarytomodifyitwithtougheningpolyIners.AsimPlemeth0dto0verc0methedriscibilityofatwo-phaseblendofsPSandatougheningpolymristotwrovetheinterfacialaffmity,wheretheadditionofablockcoP0lymerisconsideredtobemosteffective.3…  相似文献   

18.
Thermal behaviors of POTMDM-net-PMMA and POTMG/PMMA blends were studied by DDSC. Tg of the polymer network was lowered by increasing the POTMDM in feed for copolymerization of POTMDM and MMA. A crystallization peak was observed only when MMA in feed was less than 30%. Tg of POTMG/PMMA was also lowered by decreasing the content of PMMA, however, the change was observed only when PMMA content was more than 70%. These results suggest that thermal transitions of the polymer network are restricted by the mesh size. POTM chains of the polymer network effectively play as a plasticiser. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Results on the intrinsic viscosity [η] are reported for the system solvent(1)/polymer(2)/polymer(3) in which the solvent was benzene, polymer(2) was polystyrene (PS), and polymer(3) was poly(dimethylsiloxane) PDMS. The values of [η] were then used to determine the likely compatibility of polymer blends of PS and PDMS. Initial focus was on the traditional interaction parameter b 23 (1) used by several authors to predict compatibilities, it but depends on the molar mass, weight fractions, and concentrations of each polymer. A new interaction parameter b 23 (2) that is independent of polymer(3) concentration and molar mass was evaluated for determinations of polymer compatibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号