首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 IntroductionWiththeonlyexceptionthatthesmallimpurityorminorityatomscanmovebytheinterstitialmechanism ,itismostlythevacancythatisheldresponsibleforthediffusionofatomsintheorderedalloys[1 ] .Itwasgenerallyconsideredthattheminorityatomsintheorderedalloys,s…  相似文献   

2.
高雪云  王海燕  李春龙  任慧平  李德超  刘宗昌 《物理学报》2014,63(24):248101-248101
采用基于密度泛函理论的第一性原理,研究了稀土La对bcc-Fe中Cu析出行为的影响.计算了α-Fe中La原子和Cu原子与空位之间,以及La原子和Cu原子之间的点缺陷结合能;在此基础上,讨论了α-Fe中La对Cu扩散激活能的关系.结果表明:La原子与空位之间有较强的相互吸引作用,且对近邻Cu原子也有一定的束缚.此外,La的加入使Cu原子近邻的空位形成能显著升高,这表明La,Cu偏聚区形成空位较为困难.与此同时,由于La原子对近邻空位和Cu原子的吸引作用,使Cu原子向近邻空位跳跃的迁移能有所升高.迁移能与空位形成能变化的计算结果显示,La原子的加入能够使α-Fe中Cu的扩散激活能显著升高,从而延缓了铁素体区富铜相的偏聚和析出.  相似文献   

3.
Positron annihilation measurements, supported by first-principles electron-structure calculations, identify vacancies and vacancy clusters decorated by 1-2 dopant impurities in highly Sb-doped Si. The concentration of vacancy defects increases with Sb doping and contributes significantly to the electrical compensation. Annealings at low temperatures of 400-500 K convert the defects to larger complexes where the open volume is neighbored by 2-3 Sb atoms. This behavior is attributed to the migration of vacancy-Sb pairs and demonstrates at atomic level the metastability of the material grown by epitaxy at low temperature.  相似文献   

4.
A. V. Barashev 《哲学杂志》2013,93(14):1539-1555
Monte Carlo simulations of the vacancy and phosphorus (P) atom diffusion in body centred cubic (bcc) iron are presented. The input parameters for the calculations, namely the activation energies of atomic jumps, have been obtained using a potential set developed recently for a dilute Fe–P alloy using ab initio data. The diffusion coefficients entering equations for the fluxes of vacancies and solute atoms are evaluated. The results show that, in the temperature range of practical importance for P segregation, P atoms move down the vacancy gradient; hence, under irradiation conditions, vacancies should drag P atoms towards sinks of point defects. This is because of the high binding energy between a P atom and a vacancy in the first and second nearest neighbour sites from each other, which allows a vacancy to move around a P atom without loss of bonding and, hence, co-migrate with it.  相似文献   

5.
An approach to constructing a biased potential for hyperdynamic simulation of atomic systems is considered. Using this approach, the diffusion of an atom adsorbed on the surface of a two-dimensional crystal and a vacancy in the bulk of the crystal are simulated. The influence of the variation in the potential barriers due to thermal vibrations of atoms on the results of calculations is discussed. It is shown that the bias of the potential in the hyperdynamic simulation makes it possible to obtain statistical samples of transitions of atomic systems between states, similar to those given by classical molecular dynamics. However, hyperdynamics significantly accelerates computations in comparison with molecular dynamics in the case of temperature-activated transitions and the associated processes in atomic systems.  相似文献   

6.
Self-diffusion of component atoms and ‘order–order’ relaxations in a B2-ordering binary system AB showing a tendency for triple-defect formation were consistently simulated by means of two Monte Carlo techniques. In view of a strict correlation between antisite-defect and vacancy concentrations the Kinetic Monte Carlo (KMC) simulations were implemented with a temperature-dependent vacancy concentration determined by means of Semi-Grand Canonical Monte Carlo (SGCMC) simulations. The Ising model of the system was completed with local-configuration-dependent saddle-point energy parameters related to vacancy mediated atomic jumps. The simulations elucidated the atomistic origin of the experimentally observed low rate of ‘order–order’ relaxations in NiAl, as well as reproduced the experimental relation between the activation energies for ‘order–order’ kinetics and Ni self-diffusion in NiAl. Higher value of the deduced activation energy for atomic migration with respect to the effective energy barriers related to individual atomic jumps indicated their high correlation.  相似文献   

7.
Diffusion in ordered Fe-Si alloys   总被引:1,自引:0,他引:1  
The measurement of the diffusional Mössbauer line broadening in single crystalline samples at high temperatures provides microscopic information about atomic jumps. We can separate jumps of iron atoms between the various sublattices of Fe-Si intermetallic alloys (D03 structure) and measure their frequencies. The diffusion of iron in Fe-Si samples with Fe concentrations between 75 and 82 at% shows a drastic composition dependence: the jump frequency and the proportion between jumps on Fe sublattices and into antistructure (Si) sublattice positions change greatly. Close to Fe3Si stoichiometry iron diffusion is extremely fast and jumps are performed exclusively between the three Fe sublattices. The change in the diffusion process when changing the alloy composition from stoichiometric Fe3Si to the iron-rich side is discussed.  相似文献   

8.
The interaction between 10 hydrogen atoms and a α-Fe structure having a vacancy (V) has been studied using a cluster model and a semi-empirical theoretical method. The energy of the system was calculated by the atom superposition and electron delocalization molecular orbital method. The electronic structure was studied using the concept of density of states and crystal orbital overlap population curves.For the study of a sequential absorption, the hydrogen atoms were positioned in their energy minima configurations, near to the tetrahedral sites neighboring the vacancy, except the last H atom that was located far from the vacancy. The energy difference for H agglomeration was also computed. The vacancy-Hn complexes become less stable than VH species for more than three hydrogen's.The changes in the electronic structure of Fe atoms near the vacancy were also analyzed. The interactions mainly involve Fe 3d and 4s atomic orbitals. The contribution of Fe p orbitals is much less important. The Fe-Fe bond weakened as new Fe-H and H-H pairs were formed. The effect of H atoms is limited to its first Fe neighbors. The detrimental effect of H atoms on the Fe-Fe bonds can be related to the mechanism for embrittlement in α-Fe.  相似文献   

9.
The phenomenon of dynamic collective displacements of atoms in face-centered cubic crystals has been revealed using molecular dynamics method. This phenomenon plays an important role in the vacancy mechanism of diffusion. The vacancy mechanism is provided by the collision of two regions of collective atomic displacements that move a migrating atom and a vacancy toward each other. The collective thermal atomic displacements from crystal lattice sites occur as a result of the nonuniform momentum distribution of atoms according to the Maxwellian distribution. Owing to their statistical nature, the degree of correlation of the atomic displacements depends neither on the temperature nor on the interatomic interaction potential.  相似文献   

10.
本文采用卢瑟福背散射(RBS)分析技术详细测量了Mo/Si体系在Ar+和Xe7+离子束轰击下界面混合和反应随温度、剂量和剂量率的依赖关系。得到了许多新的结果。结果表明,以前的空位扩散机制、单级联间隙原子扩散机制和热峰模型都不能解释Mo/Si体系的离子束混合。我们结合固体扩散理论提出了间隙原子扩散和反应机制,圆满地解释了实验结果。 关键词:  相似文献   

11.
Compositional disordering of AlGaAs superlattices induced by Si ion implantation and subsequent annealing has been studied by secondary ion mass spectrometry (SIMS). Distinct correlation is found between the induced disordering and the rapid Si diffusion which occurs above the critical concentration of about 3×1018 cm−3. The annealing-condition dependence of the disordering suggests that AlGa intermixing is induced by the vacancy flow enhanced by the SiIIISiV pair movement which causes the rapid Si diffusion. SIMS depth profiles of the heat treated superlattices co-doped with Si and Be do not show any appreciable Si diffusion and induced disordering. This is well-explained by the formation of SiBe pairs which prevents that of SiIIISiV pairs.  相似文献   

12.
Atomic transport in ion beam mixed Co/Pt and Pd/Au bilayer systems have been studied from the shifts of maker layers in Rutherford backscattering spectroscopy. Thin layers (1 nm) of marker (Pd for Co/Pt and Ni for Pd/Au) were embedded as markers at each interfaces. 80 keV Ar+ was used to irradiate the marker samples at the temperature range between 90 and 600 K. The Co/Pt system shows isotropic atomic transport (JCo/JPt∼1.1) at low temperatures and anisotropic atomic transport (JCo/JPt∼5.0) at high temperatures. Meanwhile, the Pd/Au system shows near isotropic atomic transport (JPd/JAu∼1.2) at all temperatures examined. These results were discussed in terms of the activation energies for the normal impurity diffusion, cohesive energy difference, and the vacancy migration energy. Atomic transport in thermal spike regime is closely related with the activation energy for normal impurity diffusion. In radiation enhanced diffusion regime, the cohesive energy and/or the vacancy migration energy plays a dominant role for the atomic transport.  相似文献   

13.
Using positron annihilation measurements we observed the formation of thermal vacancies in highly As and P doped Si. The vacancies start to form at temperatures as low as 650 K and are mainly undecorated at high temperatures. Upon cooling the vacancies form stable vacancy-impurity complexes such as V-As3. We determine the vacancy formation energy of E(f)=1.1(2) eV and the migration energy of E(m)=1.2(1) eV in highly doped Si. By associating these values with the vacancy-impurity pair, we get an estimate of 2.8(3) eV for the formation energy of an isolated neutral monovacancy in intrinsic Si.  相似文献   

14.
A theoretical modeling of the formation of Frenkel pairs and the diffusion of a self-interstitial atom in silicon crystals at normal and high (hydrostatic) pressures has been performed using molecular dynamics, semiempirical quantum-chemical (NDDO-PM5, PM6), and ab initio (SIESTA) methods. It is shown that, in a silicon crystal, the most stable configuration of a self-interstitial atom in the neutral charge state (I 0) is the split configuration 〈110〉. The shifted tetrahedral configuration (T 1) is stable in the singlet and triplet excited states, as well as in the charge state Z = +2. The split 〈110〉 interstitial configuration remains stable under hydrostatic pressure (P ≤ 80 kbar). The activation barriers for diffusion of self-interstitial atoms in silicon crystals are determined to be as follows: ΔE a (Si)(〈110〉 → T 1) = 0.59 eV, ΔE a (Si)(T 1T1) = 0.1 eV, and ΔE a (Si)(T 1 → 〈110〉) = 0.23 eV. The hydrostatic pressure (P ≤ 80 kbar) increases the activation barrier for diffusion of self-interstitial atoms in silicon crystals. The energies of the formation of a separate Frenkel pair, a self-interstitial atom, and a vacancy are determined. It is demonstrated that the hydrostatic pressure decreases the energy of the formation of Frenkel pairs.  相似文献   

15.
Abstract

Irradiation with high-energy particles induces athermal migration of point defects, which affects defect reactions at low temperatures where thermal migration is negligible. We conducted molecular dynamics simulations of vacancy migration in iron and copper driven by recoil energies under electron irradiation in a high-voltage electron microscope. Minimum kinetic energy required for migration was about 0.8 and 1.0 eV in iron and copper at 20 K, which was slightly higher than the activation energy for vacancy migration. Around the minimum energy, the migration succeeded only when a first nearest neighbour (1NN) atom received the kinetic energy towards the vacancy. The migration was induced by higher kinetic energies even with larger deflection angles. Above several electron-volts and a few 10s of electron-volts, vacancies migrated directly to 2NN and 3NN sites, respectively. Vacancy migration had complicated directional dependence at higher kinetic energies through multiple collisions and replacement of atoms. The probability of vacancy migration increased with the kinetic energy and remained around 0.3–0.5 jumps per recoil event for 20–100 eV. At higher temperatures, thermal energies slightly increased the probability for kinetic energies less than 1.5 eV. The cross section of vacancy migration was 3040 and 2940 barns for 1NN atoms in iron and copper under irradiation with 1.25 MV electrons at 20 K: the previous result was overestimated by about five times.  相似文献   

16.
We demonstrate chlorine-induced modification of Si(100)-(2 x 1) under conditions where Cl is recycled rather than desorbed as SiCl2. A dimer with 2 Cl atoms, 2SiCl, converts to SiCl2+Si, allowing the bare Si atom to escape onto the terrace. At temperatures below the desorption threshold, the SiCl2 unit decays through Cl diffusion, allowing the second Si atom to escape. The result is a dimer vacancy, terrace regrowth structures, and Cl that is able to participate in another pitting event. Access to this unexpected roughening pathway is controlled by the Cl concentration and temperature. This previously overlooked process represents an important component of Si(100) surface processing.  相似文献   

17.
A di-vacancy low-temperature diffusion is proposed to explain diffusion-controlled processes in Al–Si alloys responsible for neutron-induced silicon precipitation. Ab initio calculations of potential barriers for Si atom hopping in aluminium lattice showed that in the case of di-vacancy diffusion, they are small compared with that of mono-vacancy diffusion. The low temperature diffusivity of mono-vacancies is too small to account for the measured Si diffusivities in aluminium. The dependencies of radiation-stimulated diffusion on the neutron flux and on the temperature are obtained and can be used for the experimental verification of the developed model.  相似文献   

18.
刘汝霖  方粮  郝跃  池雅庆 《物理学报》2018,67(17):176101-176101
基于密度泛函理论的爬坡弹性带方法,对金红石相二氧化钛晶体中钛间隙、钛空位、氧间隙、氧空位4种本征缺陷的扩散特征进行了研究.对比4种本征缺陷在晶格内部沿不同扩散路径的过渡态势垒后发现,缺陷扩散过程呈现出明显的各向异性.其中,钛间隙和氧间隙沿[001]方向具有最小的扩散势垒路径,激活能分别为0.505 eV和0.859 eV;氧空位和钛空位的势垒最小的扩散路径分别沿[110]方向和[111]方向,激活能分别为0.735 eV和2.375 eV.  相似文献   

19.
The microscopic mechanism for H and He trapping by vacancy defects and bubble formation in a Be host lattice is investigated using first-principles calculations. A single He atom prefers to occupy a vacancy centre while H does not. He can segregate towards the vacancy from the interstitial site much more easily than H. Both H and He exhibit lower diffusion barriers from a remote interstitial to a vacancy with regard to their diffusion barriers inside a perfect Be solid. Up to five H or 12 He atoms can be accommodated into the monovacancy space, and the Be-He interaction is much weaker than Be-H. The physical origin for aggregation of multiple H or He atoms in a vacancy is further discussed. The strong tendency of H and He trapping at vacancies provides an explanation for why H and He bubbles were experimentally observed at vacancy defects in materials. We therefore argue that vacancies provide a primary nucleation site for bubbles of H and He gases inside Be materials.  相似文献   

20.
杨景景  杜文汉 《中国物理 B》2013,22(6):66801-066801
An Sr/Si(100)-c(2×4) surface is investigated by high-resolution scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). The semiconductor property of this surface is confirmed by STS. The STM images of this surface shows that it is bias-voltage dependent and an atomic resolution image can be obtained at an empty state under a bias voltage of 1.5 V. Furthermore, one-dimensional (1D) diffusion of vacancies can be found in the room-temperature STM images. Sr vacancies diffuse along the valley channels, which are constructed by silicon dimers in the surface. Weak interaction between Sr and silicon dimers, low metal coverage, surface vacancy, and energy of thermal fluctuation at room temperature all contribute to this 1D diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号