首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A self-catalytic effect attributed to Mn2+ ions was observed when studying the oxidation of L-threonine by permanganate ions. The process obeys the rate equation:
  相似文献   

2.
The Fischer–Tropsch to olefins(FTO) process is a method for the direct conversion of synthesis gas to lower C_2–C_4olefins. Carbon-supported iron carbide nanoparticles are attractive catalysts for this reaction.The catalytic activity can be improved and undesired formation of alkanes can be suppressed by the addition of sodium and sulfur as promoters but the influence of their content and ratio remains poorly understood and the promoted catalysts often suffer from rapid deactivation due to particle growth. A series of carbon black-supported iron catalysts with similar iron content and nominal sodium/sulfur loadings of 1–30/0.5–5 wt% with respect to iron are prepared and characterized under FTO conditions at 1and 10 bar syngas pressure to illuminate the influence of the promoter level on the catalytic properties.Iron particles and promoters undergo significant reorganization during FTO operation under industrially relevant conditions. Low sodium content(1–3 wt%) leads to a delay in iron carbide formation. Sodium contents of 15–30 wt% lead to rapid loss of catalytic activity due to the covering of the iron surface with promoters during particle growth under FTO operation. Higher activity and slower loss of activity are observed at low promoter contents(1–3 wt% sodium and 0.5–1 wt% sulfur) but a minimum amount of alkali is required to effectively suppress methane and C_2–C_4paraffin formation. A reference catalyst support(carbide-derived carbon aerogel) shows that the optimum promoter level depends on iron particle size and support pore structure.  相似文献   

3.
4.
Activation parameters H , S and V and correlations between S and V are reported for peroxodisulphate oxidation of [Fe(CN)6]4–, [Fe(bipy)3]2+ (bipy = (2, 2-bipyridyl), [Fe(phen)3]2+ (phen = 1,10-phenanthroline), cis-[Fe(bipy)2(CN)2], [Fe(bipy)(CN)4]2–, [Fe(phen)(CN)4]2–, [Co(en)2(glyS)]+ (glyS = mercaptoacetate, SCH2COO2–), [Co(en)2(cyS)]+ (cyS = cysteinate, SOCH2CH(COO)NH2 2–) and [Co(en)2(amS)]2+ (amS = ethanesulphenaminate, SCH2CH2NH2 ) and for periodate and hydrogen peroxide oxidation of the three last-named complexes. Activation parameters are discussed in terms of electrostriction, solvation and ligand size contributions. Opposite trends for S /V correlations were found for oxidations of FeII complexes in comparison with oxidations of coordinated sulphur in the CoIII complexes.  相似文献   

5.
The catalytic oxidation of methane was studied over calcined and reduced Pt–Pd/γ-Al2O3 catalysts, in the presence and the absence of SO2 in the CH4–O2 reaction feed. The effect of sulfation (SO2 + O2 for 4 h at 500 °C) was also studied on the catalyst resistance to deactivation by sulfur poisoning. Sulfating the calcined Pt–Pd/γ-Al2O3 catalysts resulted in a strong deactivation for the CH4–O2 reaction. However, the catalytic activity of the reduced-sulfated Pt–Pd/γ-Al2O3 catalyst for CH4–O2 reaction remained rather unaffected in the presence and in the absence of SO2 in the reaction feed. XPS analysis revealed, over reduced-sulfated Pt–Pd/γ-Al2O3 catalysts, the presence of Pt(0) metallic surface species on which SO2 interactions may be faster related to Pd surface species. The presence of Pt(0) may be necessary to prevent the interactions between SO2 and Pd surface species. Long time catalytic tests showed that the activity of a reduced Pt–Pd/γ-Al2O3 catalysts for CH4–O2 reactions remained rather unaffected despite the presence of SO2 in the reaction feed.  相似文献   

6.
CuI/proline-catalyzed coupling reaction of 2-iodo-phenols with terminal alkynes and the following cyclization process is carried out successively in DMSO at 80?°C. Under this tandem process, 2-substituted benzo[b]furans/furo-pyridines were synthesized in good to excellent yields with a great diversity.  相似文献   

7.
A mass spectrometric (MS) method for the identification of iron protoporphyrin (IX) (FePTP, heme b) in marine particulate material and phytoplankton is described. Electrospray ionisation of FePTP produced the molecular Fe(III)PTP+ ion (m/z = 616) or the pseudomolecular [Fe(II)PTP + H]+ ion (m/= 617), depending on the oxidation state of the central iron ion. Collision induced dissociation (CID) in the ion trap mass spectrometer resulted in a single detected product ion (m/z = 557) indicative of loss of ethanoic acid from a carboxylic acid side chain. Widening the isolation width to 616 ± 3 resulted in production of a mass spectrum demonstrating the distinctive isotopic ratio of the iron containing fragment, further increasing the specificity of the analysis. Selective reactant monitoring (SRM) of the fragment ion (m/z = 557) was applied to the detection of FePTP after chromatography of ammoniacal OGP extracts of marine samples. The detection limit for FePTP analysed by SRM after chromatography was 1.2 ± 0.5 fmol. For phytoplankton samples, reasonably good agreement was achieved between results obtained with SRM and those obtained by monitoring absorbance at λ = 400 nm using a diode array detector (DAD). Use of SRM for analysis of particulate material obtained from the high latitude North Atlantic allowed for the analysis of FePTP in the presence of a co-eluting compound that interfered with detection by DAD. Simultaneous collection of mass spectra from m/z = 300 to 1500 resulted in identification of the pseudomolecular ion for the interfering compound. The CID fragmentation pattern and UV–visible mass spectra indicated that the interfering compound was a previously unidentified chlorin type compound. Comparison of FePTP determined by SRM and DAD on samples where this compound could not be detected showed that results collected using the two methods correlated. The use of both MS and DAD results in a powerful tool for quantifying this important biogenic component of the particulate iron pool.  相似文献   

8.
The R2 subunit of class-Ia ribonucleotide reductase (RNR) from Escherichia coli (E. coli) contains a diiron active site. Starting from the apo-protein and Fe(II) in solution at low Fe(II)/apoR2 ratios, mononuclear Fe(II) binding is observed indicating possible different Fe(II) binding affinities for the two alternative sites. Further, based on their M?ssbauer spectroscopy and two-iron-isotope reaction experiments, Bollinger et al. (J. Am. Chem. Soc., 1997, 119, 5976-5977) proposed that the site Fe1, which bonds to Asp84, should be associated with the higher observed (57)Fe M?ssbauer quadrupole splitting (2.41 mm s(-1)) and lower isomer shift (0.45 mm s(-1)) in the Fe(III)Fe(III) state, site Fe2, which is further from Tyr122, should have a greater affinity for Fe(II) binding than site Fe1, and Fe(IV) in the intermediate X state should reside at site Fe2. In this paper, using density functional theory (DFT) incorporated with the conductor-like screening (COSMO) solvation model and with the finite-difference Poisson-Boltzmann self-consistent reaction field (PB-SCRF) methodologies, we have demonstrated that the observed large quadrupole splitting for the diferric state R2 does come from site Fe1(III) and it is mainly caused by the binding position of the carboxylate group of the Asp84 sidechain. Further, a series of active site clusters with mononuclear Fe(II) binding at either site Fe1 or Fe2 have been studied, which show that with a single dielectric medium outside the active site quantum region, there is no energetic preference for Fe(II) binding at one site over another. However, when including the explicit extended protein environment in the PB-SCRF model, the reaction field favors the Fe(II) binding at site Fe2 rather than at site Fe1 by ~9 kcal mol(-1). Therefore our calculations support the proposal of the previous M?ssbauer spectroscopy and two-iron-isotope reaction experiments by Bollinger et al.  相似文献   

9.
The first and last melting points (FLMP) method was employed to measure the melting temperature–composition (T–wTw) data at solid–liquid–gas (SLG) equilibrium for the naphthalene–biphenyl–CO2 system. Results show that the system's phase diagram is simple eutectic under all investigated pressures (0.1, 3.0, 6.0 and 8.0 MPa), and the system's eutectic composition is almost constant. The (T–wTw) data measured with a high-pressure differential scanning calorimetry are in good agreement with these from FLMP. The semi-predictive model using solubility data (SMS) and the calculation model combining with GE models (CMG) for binary systems were extended to this ternary system. For the SMS model, the Peng–Robinson equation of state (PR-EoS) with the van der Waals one-fluid mixing rule was used to correlate the solubility data of the two solutes in CO2 to obtain the two interaction parameters k12 and k13 and calculate the fugacity coefficients of the solutes in the liquid and vapor phases; the UNIFAC method was also applied to the activity coefficient of the solutes in the liquid phase. For the CMG model, the PR-EoS combining respectively the MHV1, LCVM, and modified LCVM (mLCVM) mixing rules was applied to the fugacity coefficients of the solutes. Results show that the CMG model with MHV1 gives the best prediction of the system's SLG equilibrium, while the SMS model and the CMG model with mLCVM provide comparable and acceptable results.  相似文献   

10.
Ternary bismuthides RE5TtBi2 containing rare-earth (RE=La-Nd, Gd-Er) and tetrel (Tt=Si, Ge) atoms have been prepared by arc-melting of the elements followed by annealing at 800 °C. They adopt the β-Yb5Sb3-type structure (Pearson symbol oP32, space group Pnma, Z=4), as revealed through analysis by single-crystal X-ray diffraction on Ce5Si0.869(4)Bi2.131(4) and powder X-ray diffraction on Ce5GeBi2. Cell parameters for the entire series lie in the ranges of a=12.8-11.8 Å, b=9.6-9.0 Å, and c=8.4-7.9 Å. Solid solubility in Ce5SixBi3−x and Pr5SixBi3−x (approximately 0.9≤x≤1.2, depending on the RE member) is much more limited compared to the antimonides, consistent with a highly ordered structure in which the two possible anion sites are essentially segregated into a smaller one occupied by Tt atoms (CN7) and a larger one occupied by Bi atoms (CN9). Band structure calculations on La5SiBi2 confirm the importance of La-La bonding interactions near the Fermi level. X-ray photoelectron spectra support the presence of partially anionic Bi atoms, as indicated by a small negative binding energy shift relative to elemental Bi. The Ce and Pr members undergo magnetic transitions at low temperatures, possibly involving ferromagnetic interactions, that are strongly influenced by the nature of the Tt atom.  相似文献   

11.
The reaction mechanism, reaction intermediates, and catalytically active species of the Cu–diphosphine-catalyzed N-formylation of amines (R1R2NH) with CO2 and hydrosilane were investigated. The NMR and kinetic experiments show that the catalytically active species is a Cu-hydride–diphosphine complex, which was generated from the Cu precursor, diphosphine ligand, and hydrosilane. Isotopic experiments using 13CO2 and deuterated hydrosilane revealed the incorporation of the carbonyl group of CO2 and the H atom of Si–H moiety into the formamide (R1R2NCHO) product. The formation of a Cu-formate species as an intermediate of the reaction was clarified by in situ 1H and 13C NMR studies.  相似文献   

12.
We have demonstrated three contrasting synthetic strategies to assemble pyrrole-based C3-symmetric molecule. Here, ring-closing metathesis (RCM), Buchwald–Hartwig cross-coupling and Clauson–Kaas pyrrole synthesis have been used as key steps. Interestingly, readily available starting materials such as 4-aminoacetophenone, 4-bromo acetophenone and 4-nitro acetophenone have been used as starting materials. Grubbs’ first generation catalyst (G-I) is useful for one-pot RCM and aromatization sequence without the involvement of additional reagents. We also report photophysical properties of these star-shaped molecules.  相似文献   

13.
In the present study, we examined the potential chemopreventive activity of dichloromethane extract of Eurycorymbus cavaleriei by investigating the change of constitutions after incubation with glutathione (GSH). The major constitutions in the dichloromethane extract of E. cavaleriei were cumarin compounds and their cleavage pattern was examined by LC–MS-MS and the characteristic product ions at m/z 206 and 207 were helpful to determine the substitutions of coumarinolignoid compounds. The mechanism of conjugations of 5′-demethylaquillochin and its isomer with GSH was discussed and validated through analysis of the conjugations of reference compound 6-hydroxy-7-methoxycoumarin with GSH by LC–MS-MS and NMR spectrum. The relative ability to induce the detoxification enzyme, NAD(P)H:quinone oxidoreductase 1 (NQO1) of nine coumarin compounds was tested which also showed 5′-demethylaquillochin exhibited the most potential chemopreventive ability. These observations suggest that 5′-demethylaquillochin and its isomer from the dichloromethane extract of E. cavaleriei have potential as chemopreventive agents through induction of detoxification enzymes.  相似文献   

14.
Monitoring extracellular metabolites of bacteria is very useful for not only metabolomics research but also for assessment of the effects of various chemicals, including antimicrobial agents and drugs. Herein, we describe the automated headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography–mass spectrometry (GC–MS) for the qualitative as well as semi-quantitative determination of metabolic responses of Escherichia coli to an antimicrobial agent, cinnamaldehyde. The minimum inhibitory concentration of cinnamaldehyde was calculated to be 2 g L−1. We found that cinnamaldehyde was an important factor influencing the metabolic profile and growth process. A higher number of metabolites were observed during the mid-logarithmic growth phase. The metabolite variations (types and concentrations) induced by cinnamaldehyde were dependent on both cell density and the dose of cinnamaldehyde. Simultaneously, 25 different metabolites were separated and detected (e.g., indole, alkane, alcohol, organic acids, esters, etc.) in headspace of complex biological samples due to intermittent addition of high dose of cinnamaldehyde. The study was done using an automated system, thereby minimizing manual workup and indicating the potential of the method for high-throughput analysis. These findings enhanced the understanding of the metabolic responses of E. coli to cinnamaldehyde shock effect and demonstrated the effectiveness of the SPME–GC–MS based metabolomics approach to study such a complex biological system.  相似文献   

15.
A series of oxygen-deficient Sr0.85Bi0.15Co1−xFexO3−δ (0.0?x?1.0) perovskite phases were prepared using solid-state reaction. Results of neutron powder diffraction analyses show that the introduction of Fe onto the B-site severely effects the long range coherence of the oxygen vacancy ordered, I4/mmm supercell, observed for the x=0.0 sample. For x=0.1 a smaller, a=bap, c≈2ap, P4/mmm supercell gives the best agreement to the diffraction data, whilst phases in the range 0.2?x?0.6 adopt disordered cubic perovskite structures. Pseudo-cubic, a=bap, cap, structures are found for x?0.8. Evidence of weak superstructures, reflecting local oxygen ordering, is also obtained from electron diffraction. For all oxygen-annealed phases the average structure reverts to cubic Pmm. The as-prepared samples show G-type antiferromagnetic order at room temperature. The oxygen annealed x=0.10, 0.25 and 1.0 samples display low-temperature spin-glass transitions.  相似文献   

16.
Common wisdom might anticipate that two methyl groups placed on a molecular migration route should act as an impediment. However, the “conducted tour” migration of Li+(THF)4 across the aryl ring (“π-route”) during the cis/trans stereoinversion of α-arylvinyllithiums had been found to occur with practically equal velocities in the presence of either one or two ortho-alkyl substituents. We now report that the omission of both ortho-methyl groups retards the stereoinversion process. In order to arrive at an answer to the title question, we investigate the aggregation equilibria and microsolvation states of ortho, ortho′-unsubstituted α-lithiostyrenes by means of approved secondary NMR criteria. Beyond such necessary knowledge about the ground-state properties, we provide kinetic evidence showing that the retarded cis/trans stereoinversion of α-lithiostyrene proceeds by the pseudomonomolecular, ionic mechanism with Li+(THF)4 migration.  相似文献   

17.
The reaction of Li2[1,2-{N(PMes2)}2C6H4], formed in situ from n-BuLi and the corresponding amines, with 1 equiv. of [NiBr2(DME)] gives [Ni{1-N(PMes2)-2-N(μ-PMes2)C6H43N,N′,P1P′}]2 (1). After activation by methylalumoxane (MAO), 1 is a highly active catalyst in the oligomerization and isomerization of α-olefins such as ethene, propene, isobutene, 1-hexene and 1,5-hexadiene. For ethene oligomerization turnover frequencies (TOFs) range from 3000 to 79015 h−1, depending on the reaction conditions. The TOF for propene oligomerization reaches 1 190 730 h−1. To our knowledge, catalyst 1, activated by MAO, is the most active catalyst for the oligomerization of propene and outperforms the best known complexes for this reaction. In the reactions with 1-hexene, 1,5-hexadiene and isobutene dimerization and isomerization products were observed.  相似文献   

18.
Polyamide 6 (PA6)/phosphorylated silica nanocomposites were synthesized during PA6 extrusion through in situ formation of the inorganic phase without solvent. This synthesis is based on the hydrolysis-condensation reactions of diethylphosphatoethyltriethoxysilane (SiP) as a functional inorganic precursor in combination with or without tetraethoxysilane (TEOS) dispersed in the molten PA6. This synthesis is carried out during PA 6 matrix extrusion that means at high temperature and under shear. The characterization of the in situ synthesized PA6/phosphorylated silica nanocomposites by solid 29Si Nuclear Magnetic Resonance (NMR), Small Angle X-ray Scattering (SAXS) and Transmission Electron Microscopy (TEM) coupled with Energy Dispersive X-ray spectroscopy (EDX) demonstrated the possibility to directly create in less than 5 min at 220 °C a phosphorylated silica uniformly dispersed in the PA6, i.e. in the form of well dispersed particles or aggregates of sub-micron range. The influence of silicon and phosphorus on the thermal and fire retardant behaviour was investigated by thermogravimetric analysis (TGA), cone calorimeter and UL94 tests. The fire retardant behaviour was modified with a formation of a char and a peak heat release rate (PHRR) decrease by more than 50% for the SiP based nanocomposite compared to the pure PA6.  相似文献   

19.
The sulfur isotope is an important geochemical tracer in diverse fields of geosciences. In this study, the effects of three different cone combinations with the addition of N2 on the performance of in situ S isotope analyses were investigated in detail. The signal intensities of S isotopes were improved by a factor of 2.3 and 3.6 using the X skimmer cone combined with the standard sample cone or the Jet sample cone, respectively, compared with the standard arrangement (H skimmer cone combined with the standard sample cone). This signal enhancement is important for the improvement of the precision and accuracy of in situ S isotope analysis at high spatial resolution. Different cone combinations have a significant effect on the mass bias and mass bias stability for S isotopes. Poor precisions of S isotope ratios were obtained using the Jet and X cones combination at their corresponding optimum makeup gas flow when using Ar plasma only. The addition of 4–8 ml min−1 nitrogen to the central gas flow in laser ablation MC-ICP-MS was found to significantly enlarge the mass bias stability zone at their corresponding optimum makeup gas flow in these three different cone combinations. The polyatomic interferences of OO, SH, OOH were also significantly reduced, and the interference free plateaus of sulfur isotopes became broader and flatter in the nitrogen mode (N2 = 4 ml min−1). However, the signal intensity of S was not increased by the addition of nitrogen in this study. The laser fluence and ablation mode had significant effects on sulfur isotope fractionation during the analysis of sulfides and elemental sulfur by laser ablation MC-ICP-MS. The matrix effect among different sulfides and elemental sulfur was observed, but could be significantly reduced by line scan ablation in preference to single spot ablation under the optimized fluence. It is recommended that the d90 values of the particles in pressed powder pellets for accurate and precise S isotope analysis should be less than 10 μm. Under the selected optimized analytical conditions, excellent agreements between the determined values and the reference values were achieved for the IAEA-S series standard reference materials and a set of six well-characterized, isotopic homogeneous sulfide standards (PPP-1, MoS2, MASS-1, P-GBW07267, P-GBW07268, P-GBW07270), validating the capability of the developed method for providing high-quality in situ S isotope data in sulfides and elemental sulfur.  相似文献   

20.
Treatment of [Cp∗Ir(ppy)Cl] (Cp∗ = η5-C5Me5, ppyH = 2-(2-pyridyl)phenyl) with Ag(OTf) (OTf− = triflate) in MeOH and MeCN gave the solvento complexes [Cp∗Ir(ppy)(solv)][OTf] (solv = MeOH (1) and MeCN (2)). Complex 1 is capable of catalyzing oxidation and azirdination of styrene with PhIO and PhINTs (Ts = tosyl), respectively. Treatment of 2 with a stoichiometric amount of PhINTs resulted in the insertion of the NTs group into the Ir-C(ppy) bond and formation of [Cp∗Ir(η2-ppy-NTs)(MeCN)][OTf] (3). Treatment of 1 with R2E2 afforded [Cp∗Ir(ppy)(η1-R2E2)][OTf] (E = S (4), Se (5), Te (6)). Reactions of 4 and 5 with Ag(OTf) resulted in cleavage of the E-E bond and insertion of an ER group into the Ir-C(ppy) bond. The crystal structures of complexes 2-6 and [Cp∗Ir(η2-ppy-S-p-tol)(H2O)][OTf]2 have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号