首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Does water vapor prevent upscaling sonoluminescence?   总被引:3,自引:0,他引:3  
Experimental results for single-bubble sonoluminescence of air bubbles at very low frequency f = 7.1 kHz are presented: In contrast to the predictions of a recent model [S. Hilgenfeldt and D. Lohse, Phys. Rev. Lett. 82, 1036 (1999)], the bubbles are only as bright (10(4)-10(5) photons per pulse) and the pulses as long (approximately 150 ps) as at f = 20 kHz. We can theoretically account for this effect by incorporating water vapor into the model: During the rapid bubble collapse a large amount of water vapor is trapped inside the bubble, resulting in an increased heat capacity and hence lower temperatures, i.e., hindering upscaling. At this low frequency water vapor also dominates the light emission process.  相似文献   

2.
The 2S electron bubble placed in liquid helium has been previously believed to be spherical. We show that the 2S bubble is morphologically unstable at pressures above -1.23 bars. The 2S state being known to be radially unstable at pressures below -1.33 bars, the result leaves only a very narrow pressure range in which it can be found in a spherical configuration. Our stability analysis indicates that the 2S bubble is unstable against perturbations proportional to any of the third spherical harmonics Y(3m). Our numerical simulations show that there exist nonspherical stable configurations, such as the ones Maris and Konstantinov predicted for the 1P, 1D, and 2P electron bubbles and confirmed experimentally for the 1P. We believe that the 2S bubbles can also be produced and that our prediction will yield itself to experimental verification.  相似文献   

3.
This study endeavours to apply a theoretical model for predicting the dynamics of a bubble cluster of various sizes, within which each bubble may assume different initial conditions from other bubbles in the cluster. The resulting system of coupled Keller-Miksis-Parlitz equations are solved numerically, and the effects of coupling and bubble size on bubble cluster dynamics are examined for a given set of ultrasound parameters. It has been found that the effects of coupling are significant, and a bubble cluster's bifurcation characteristics and route to chaos can be altered by inter-bubble interactions. This gives rise to the possibility of suppressing the chaotic oscillations of microbubbles by varying bubble cluster size. Small equilibrium radii bubbles have little influence on the dynamics of neighbouring bubbles in a cluster via coupling. Furthermore, a bubble system consisting of smaller-sized bubbles transitions from order to chaos at lower driving pressure amplitudes.  相似文献   

4.
Chekifi  Tawfiq  Boukraa  Moustafa  Aissani  Mouloud 《显形杂志》2021,24(3):519-530

Numerical simulations are performed to investigate the breakup of air bubble in flow focusing configuration; the CLSVOF (coupled level set with volume of fluid) method is employed to track the interface, which allows a better identification of the liquid–gas interface via a function called level set. The CFD simulations showed that the velocity ratio, the interfacial tension, the outer channel diameter, the continuous phase viscosity, the orifice width and length play an important role in the determination of the air bubble’s size and shape. However, at low capillary number, increasing the flow velocity ratio gives a smaller bubble size in shorter time, while the increase in interfacial tension leads to a bigger bubble. Moreover, the carrier fluid is found to slightly affect the bubbling mechanism, while the smallest bubbles were obtained with the smallest orifice size. In addition, three breakup regimes are observed in this device: disc-bubble (DB), elongated bubble (EB) and the slug bubble (SB) regime flows. This work also demonstrates that the CLSVOF is an effective method to simulate the bubbles breakup in flow focusing geometry. In addition, a comparison of our computational simulations with available experimental results reveals reasonably good agreement.

Graphic abstract
  相似文献   

5.
A recent conjecture on two-dimensional foams suggested that for fixed topology with given bubble areas there is a unique state of stable equilibrium. We present counter-examples, consisting of a ring of bubbles around a central one, which refute this conjecture. The discussion centres on a novel form of instability which causes symmetric clusters to become distorted. The stability of these bubble clusters is examined in terms of the Hessian of the energy. Received 8 November 2001  相似文献   

6.
The sonication of aqueous solution generates microscopic cavitation bubbles that may growth and violently collapse to produce highly reactive species (i.e. OH, HO2 and H2O2), hydrogen and emit light, sonoluminescence. The bubble size is a key parameter that influences the chemical activity of the system. This wok aims to study theoretically the size of active bubbles for the production of hydrogen in ultrasonic cavitation field in water using a single bubble sonochemistry model. The effect of several parameters such as frequency of ultrasound, acoustic intensity and liquid temperature on the range of sonochemically active bubbles for the production of hydrogen was clarified. The numerical simulation results showed that the size of active bubbles is an interval which includes an optimum value at which the production rate of H2 is maximal. It was shown that the range of ambient radius for an active bubble as well as the optimum bubble radius for the production of hydrogen increased with increasing acoustic intensity and decreased with increasing ultrasound frequency and bulk liquid temperature. It was found that the range of ambient bubble radius dependence of the operational conditions followed the same trend as those reported experimentally for sonoluminescing bubbles. Comparison with literature data showed a good agreement between the theoretical determined optimum bubble sizes for the production of hydrogen and the experimental reported sizes for sonoluminescing bubbles.  相似文献   

7.
球状泡群内气泡的耦合振动   总被引:1,自引:0,他引:1       下载免费PDF全文
王成会  莫润阳  胡静  陈时 《物理学报》2015,64(23):234301-234301
振动气泡形成辐射场影响其他气泡的运动, 故多气泡体系中气泡处于耦合振动状态. 本文在气泡群振动模型的基础上, 考虑气泡间耦合振动的影响, 得到了均匀球状泡群内振动气泡的动力学方程, 以此为基础分析了气泡的非线性声响应特征. 气泡间的耦合振动增加了系统对每个气泡的约束, 降低了气泡的自然共振频率, 增强了气泡的非线性声响应. 随着气泡数密度的增加, 振动气泡受到的抑制增强; 增加液体静压力同样可抑制泡群内气泡的振动, 且存在静压力敏感区(1–2 atm, 1 atm=1.01325×105 Pa); 驱动声波对气泡振动影响很大, 随着声波频率的增加, 能够形成空化影响的气泡尺度范围变窄. 在同样的声条件、泡群尺寸以及气泡内外环境下, 初始半径小于5 μm 的气泡具有较强的声响应. 气泡耦合振动会削弱单个气泡的空化影响, 但可延长多气泡系统空化泡崩溃发生的时间间隔和增大作用范围, 整体空化效应增强.  相似文献   

8.
J Wu  W L Nyborg 《Ultrasonics》1990,28(2):115-119
Techniques which use hydrophobic polycarbonate thin sheets containing randomly spaced, fairly uniform small pores immersed in water to trap air bubbles have been found to be useful in biophysical experiments. The utilization of broadband polyvinylidene fluoride transducers in this work made it possible to measure a continuous frequency spectrum of the transmission coefficient of the trapped bubbles. The results of the measurements show: (1) the frequency response curve of the bubble ensemble is much broader than that of a single bubble predicted by theory; and (2) as the incident sound pressure at a micropore membrane increases from 110 to 660 Pa the resonance frequency of bubbles shifts to lower values by as much as 7%.  相似文献   

9.
The present study treats the effects of mass transport, heat transfer and chemical reactions heat on the bubble dynamics by spanning a range of ambient bubble radii. The thermodynamic behavior of the acoustic bubble was shown for three wave frequencies, 355, 515 and 1000 kHz. The used acoustic amplitude ranges from 1 to 3 atm. It has been demonstrated that the ambient bubble radius, R0, of the maximal response (i.e., maximal bubble temperature and pressure, Tmax and Pmax) is shifted toward lower values if the acoustic amplitude (at fixed frequency) or the ultrasonic frequency (at fixed amplitude) are increased. The range of the ambient bubble radius narrows as the ultrasonic frequency increases. Heat exchange at the bubble interface was found to be the most important mechanism within the bubble internal energy balance for acoustic amplitudes lower than 2.5 and 3 atm for ultrasonic frequencies of 355 and 515 kHz, respectively. For acoustic amplitudes greater or equal to 2.5 and 3 atm, corresponding to 355 and 515 kHz, respectively, mass transport mechanism (i.e., evaporation and condensation of water vapor) becomes dominant compared to the other mechanisms. At 1000 kHz, the mechanism of heat transfer persists to be dominant for all the used acoustic amplitudes (from 1 to 3 atm). Practically, all the above observations were maintained for bubbles at and around the optimum bubble radius, whereas no significant impact of the three energetic mechanisms was observed for bubbles of too lower and too higher values of R0 (limits of the investigated ranges of R0).  相似文献   

10.
本文主要研究了直流电场对冷态注入氮气气泡和R113沸腾气泡行为的影响.利用高速摄像机拍摄了冷态注入气泡和热态沸腾气泡在不同场强作用下的实验图像,并对气泡的脱离进行了定量分析.实验结果表明:注入氮气气泡和沸腾气泡沿电场方向显著伸长,其脱离长径比随着场强升高而增大,并且电场对沸腾气泡伸长行为的影响更显著.此外,注入气泡和沸腾气泡的脱离体积随着场强增大都具有减小的趋势,而且注入气泡体积随场强减小的行为更明显.  相似文献   

11.
The acoustic properties of sea bed sediments containing occluded gas are dominated by the volume of gas contained in bubbles, the size of bubbles, and the elastic properties of the soil matrix. This study evaluated current theory developed by Anderson and Hampton to determine the sound speed and resonance frequency of gassy soils, and the models they used to determine the elastic properties of the soils. It compared calculated sound speeds, based on material properties simulated by the models, with measured sound speeds on "large bubble" laboratory soils produced in a similar manner to natural sea bed gassy soils. There was some evidence that the Anderson and Hampton equations accurately predicted sound speed at lower frequencies of bubbles resonance and below, but results were sensitive to inappropriate values for the elastic and damping properties of the soil. The bounds of sound speed based on the elastic properties of models that simulate "compressible fluid" or "suspension" behavior were grossly misleading when applied to large bubble soils. Conversely, sound speed based on models that correctly simulate the "bulk" or "matrix" properties of large bubble soils, at strain magnitudes and strain rates equivalent to acoustic signals, agreed well with measured data.  相似文献   

12.
徐桂舟  徐展  丁贝  侯志鹏  王文洪  徐锋 《物理学报》2018,67(13):137508-137508
磁性斯格明子由于拓扑的保护性,具有很高的稳定性和较小的临界驱动电流,有望应用于未来的赛道存储器件中.而在中心对称体系,由于偶极作用的各向同性,磁泡的拓扑性和螺旋度都呈现出多样性的特征.其中非平庸的磁泡即等同于磁性斯格明子.我们通过近期实验结果,结合微磁学模拟的方法,发现在中心对称体系中磁斯格明子的拓扑性会受到体系垂直各向异性的调控.另外在加磁场的演变过程中,会很大程度上依赖于基态畴的畴壁特性.磁场的倾斜或者一定的面内各向异性也会改变磁斯格明子的形态.通过对材料的基态磁结构及磁各向异性的调节,辅助以面内分量的控制,可以对基态磁畴、进而对磁斯格明子的拓扑性实现调控.这对磁斯格明子在电流驱动存储器件中的应用具有重要意义.  相似文献   

13.
许欢  范鹏飞  马勇  郭霞生  杨平  屠娟  章东 《中国物理 B》2017,26(2):24301-024301
This study investigated dissolution processes of cavitation bubbles generated during in vivo shock wave(SW)-induced treatments. Both active cavitation detection(ACD) and the B-mode imaging technique were applied to measure the dissolution procedure of bi Spheres contrast agent bubbles by in vitro experiments. Besides, the simulation of SW-induced cavitation bubbles dissolution behaviors detected by the B-mode imaging system during in vivo SW treatments, including extracorporeal shock wave lithotripsy(ESWL) and extracorporeal shock wave therapy(ESWT), were carried out based on calculating the integrated scattering cross-section of dissolving gas bubbles with employing gas bubble dissolution equations and Gaussian bubble size distribution. The results showed that(i) B-mode imaging technology is an effective tool to monitor the temporal evolution of cavitation bubbles dissolution procedures after the SW pulses ceased, which is important for evaluation and controlling the cavitation activity generated during subsequent SW treatments within a treatment period;(ii) the characteristics of the bubbles, such as the bubble size distribution and gas diffusion, can be estimated by simulating the experimental data properly.  相似文献   

14.
为了建立多光谱参数用于草莓成熟度的自动识别,采用高光谱图像技术,通过提取草莓样本ROI的平均光谱,计算已有的八个成熟度参数Ind1,Ind2,Ind3,IAD,I1,I2,I3,I4的参数值,并结合Fisher线性判别法判断八个参数对于三种成熟度(成熟、接近成熟、未成熟)草莓样本的分类识别效果,发现基于I4参数的线性判别分析模型的识别效果最佳,建模集和预测集识别准确率分别为90%和91.67%;基于草莓样本的光谱特征,提取与草莓成熟度相关的三个波长535,675和980 nm,并基于这三个波长和已有的参数形式,构建了四个用于草莓成熟度检测的新参数:i1,i2,i3,i4,通过Fisher线性判别法判断四个参数的分类识别效果,发现基于参数i1,i2和i4的线性判别分析模型的识别效果均比参数I4好,建模集和预测集识别准确率为95.83%,95.83%,95.83%和95%,95%,96.67%。结果表明新建立的多光谱参数i1,i2和i4可以用于草莓成熟度的自动分类识别,为草莓成熟度的在线检测提供了理论依据。  相似文献   

15.
The calculation of the equilibrium constants K of the sonolysis reactions of CO2 into CO and O atom, the recombination of O atoms into O2 and the formation of H2O starting with H and O atoms, has been studied by means of statistical thermodynamic. The constants have been calculated at 300 kHz versus the pressure and the temperature according to the extreme conditions expected in a cavitation bubble, e.g. in the range from ambient temperature to 15200 K and from ambient pressure to 300 bar. The decomposition of CO2 appears to be thermodynamically favored at 15200 K and 1 bar with a constant K1=1.52 x 10(6), whereas the formation of O2 is not expected to occur (K2=1.8 x10(-8) maximum value at 15200 K and 300 bar) in comparison to the formation of water (K3=3.4 x 10(47) at 298 K and 300 bar). The most thermodynamic favorable location of each reactions is then proposed, the surrounding shell region for the thermic decomposition of CO2 and the wall of the cavitation bubble for the formation of water. Starting from a work of Henglein on the sonolysis of CO2 in water at 300 kHz, the experimental amount of CO formed (7.2 x 10(20)molecules L(-1)) is compared to the theoretical CO amount (1.4 x 10(27)molecules L(-1)) which can be produced by the sonolysis of the same starting amount CO2. With the help of the literature data, the number of cavitation bubble has been evaluated to 6.2 x 10(15) bubbles L(-1) at 300 kHz, in 15 min. This means that about 1 bubble on 1900000 is efficient for undergoing the sonolysis of CO2.  相似文献   

16.
An experimental investigation of the size and volumetric concentration of acoustic cavitation bubbles is presented. The cavitation bubble cloud is generated at 20 kHz by an immersed horn in a rectangular glass vessel containing bi-distilled water. Two laser techniques, laser diffraction and phase Doppler interferometry, are implemented and compared. These two techniques are based on different measuring principles. The laser diffraction technique analyses the light pattern scattered by the bubbles along a line-of-sight of the experimental vessel (spatial average). The phase Doppler technique is based on the analysis of the light scattered from single bubbles passing through a set of interference fringes formed by the intersection of two laser beams: bubble size and velocity distributions are extracted from a great number of single-bubble events (local and temporal average) but only size distributions are discussed here. Difficulties arising in the application of the laser diffraction technique are discussed: in particular, the fact that the acoustic wave disturbs the light scattering patterns even when there are no cavitation bubbles along the measurement volume. As a consequence, a procedure has been developed to correct the raw data in order to get a significant bubble size distribution. After this data treatment has been applied the results from the two measurement techniques show good agreement. Under the emitter surface, the Sauter mean diameter D(3, 2) is approximately 10 microm by phase Doppler measurement and 7.5 microm by laser diffraction measurement at 179 W. Note that the mean measured diameter is much smaller than the resonance diameter predicted by the linear theory (about 280 microm). The influence of the acoustic power is investigated. Axial and radial profiles of mean bubble diameters and void fraction are also presented.  相似文献   

17.
马艳  林书玉  徐洁 《物理学报》2018,67(3):34301-034301
计算了两个具有非球形扰动的气泡所组成系统的能量,并基于Lagrange方程得到了有声相互作用的非球形气泡的动力学方程和形状稳定性方程,研究了声场中非球形气泡间相互作用力对非球形气泡的形状不稳定性和气泡形状模态振幅的影响.研究结果表明声场中具有非球形扰动的气泡之间的耦合方式有两种:形状耦合模式和径向耦合模式,气泡之间的耦合方式取决于气泡形状扰动模态.由形状耦合及径向耦合产生的气泡之间的相互作用力能够改变单个气泡的形状不稳定及形状模态振幅,具体影响因素取决于声场驱动条件、气泡形状模态、相邻气泡的初始半径.  相似文献   

18.
The activation of bubbles by an acoustic field has been shown to temporarily open the blood-brain barrier (BBB), but the trigger cause responsible for the physiological effects involved in the process of BBB opening remains unknown. Here, the trigger cause (i.e., physical mechanism) of the focused ultrasound-induced BBB opening with monodispersed microbubbles is identified. Sixty-seven mice were injected intravenously with bubbles of 1-2, 4-5, or 6-8 μm in diameter and the concentration of 10(7) numbers/ml. The right hippocampus of each mouse was then sonicated using focused ultrasound (1.5 MHz frequency, 100 cycles pulse length, 10 Hz pulse repetition frequency, 1 min duration). Peak-rarefactional pressures of 0.15, 0.30, 0.45, or 0.60 MPa were applied to identify the threshold of BBB opening and inertial cavitation (IC). Our results suggest that the BBB opens with nonlinear bubble oscillation when the bubble diameter is similar to the capillary diameter and with inertial cavitation when it is not. The bubble may thus have to be in contact with the capillary wall to induce BBB opening without IC. BBB opening was shown capable of being induced safely with nonlinear bubble oscillation at the pressure threshold and its volume was highly dependent on both the acoustic pressure and bubble diameter.  相似文献   

19.
The use of bubbles in applications such as surface chemistry, drug delivery, and ultrasonic cleaning etc. has been enormously popular in the past two decades. It has been recognized that acoustically-driven bubbles can be used to disturb the flow field near a boundary in order to accelerate physical or chemical reactions on the surface. The interactions between bubbles and a surface have been studied experimentally and analytically. However, most of the investigations focused on violently oscillating bubbles (also known as cavitation bubble), less attention has been given to understand the interactions between moderately oscillating bubbles and a boundary. Moreover, cavitation bubbles were normally generated in situ by a high intensity laser beam, little experimental work has been carried out to study the translational trajectory of a moderately oscillating bubble in an acoustic field and subsequent interactions with the surface. This paper describes the design of an ultrasonic test cell and explores the mechanism of bubble manipulation within the test cell. The test cell consists of a transducer, a liquid medium and a glass backing plate. The acoustic field within the multi-layered stack was designed in such a way that it was effectively one dimensional. This was then successfully simulated by a one dimensional network model. The model can accurately predict the impedance of the test cell as well as the mode shape (distribution of particle velocity and stress/pressure field) within the whole assembly. The mode shape of the stack was designed so that bubbles can be pushed from their injection point onto a backing glass plate. Bubble radial oscillation was simulated by a modified Keller–Miksis equation and bubble translational motion was derived from an equation obtained by applying Newton’s second law to a bubble in a liquid medium. Results indicated that the bubble trajectory depends on the acoustic pressure amplitude and initial bubble size: an increase of pressure amplitude or a decrease of bubble size forces bubbles larger than their resonant size to arrive at the target plate at lower heights, while the trajectories of smaller bubbles are less influenced by these factors. The test cell is also suitable for testing the effects of drag force on the bubble motion and for studying the bubble behavior near a surface.  相似文献   

20.
Ultrasonic cavitation at frequencies of 0.514, 0.866, 1.03 and 1.61 MHz in water flowing through tubes was observed by counting bubbles downstream with a resonant bubble detector (RBD) operated at 0.89 or 1.7 MHz. In a 21 mm diameter, thin-walled tube, cavitation thresholds in tap water flowing at 5.3 cm s?1 ranged from 2.0 – 2.5 bar at 0.514 MHz to 3 – 4 bar at 1.61 MHz. When high speed injections were employed to trigger the ultrasonic cavitation with hydrodynamically-generated bubbles, the thresholds were reduced to about 2 bar and bubble production was enhanced for 1.03 and 1.61 MHz exposures. Ultrasonic radiation forces on the bubbles and bubble coalescence appeared to cause, under some conditions, a reduction in bubble counts during subthreshold exposures when bubbles were injected into the flow. The RBD method is a useful tool for detecting and semi-quantitatively observing cavitation in a flow-through exposure system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号