首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of ground-state Y with 2-butyne has been investigated in detail using B3LYP method. Four pathways for elimination of H2 were identified. Two isomers, Y(HCCC)CH3 and Y(H2CCCCH2) were assigned to the observed product, YC4H4. The calculated PESs suggest that the concerted H2-elimination leading to Y(H2CCCCH2) + H2 product is the most favorable pathway. For the elimination of CH3, combining the results of this work with our previous study on Y + propyne reaction, a general mechanism for the reactions of Y with 2-alkynes bearing RCCCH3 structure was established: Y + RCCCH3 → π-complex → TS(H-migration) → HY(CH2CC)R → TS (CC insertion) → (CH2)HYCCR → TS(H-migration) → H3CYCCR → CH3 + YC2R. Such mechanism was found to be always energetically more favorable than the direct sp–sp3 CC bond insertion mechanism. Further, such mechanism can also be applied to the elimination of CH4 and it can be described as: Y + CH3CCCH3 → π-complex → TS (H-migration) → HY(H2CCC)CH3 → TS(CC insertion) → (H2CCC)HYCH3 → TS(H-migration) → CH4 + YC3H2.  相似文献   

2.
The mechanisms for the three products ZrS+, and ZrOS+ of the title reaction have been studied by using B3LYP/6-311+G* and CCSD(T)/SDD+6-311+G* methods. It is found that both ZrS+ and formations involve the same O/S exchange process via a four-center transition state TS12 to form an intermediate IM2. Exception of that IM2 can dissociate into the ZrS+ product, a favorable intramolecular rearrangement mechanism associated with the formation has been identified, which explains why ZrS+ was excluded as a precusor for the formation and why the lower efficiency of the ZrS+ formation was observed in experiment. For the formation of ZrOS+, two parallel channels (path A and B) yielding their corresponding product isomer have been identified. Path B involving an insertion–elimination mechanism with a calculated barrier underestimated by ca. 25.0 kJ/mol should be attributed to the threshold of 114.8 ± 12.5 kJ/mol assigned in the experiment. But path A should make some contributions to the formation of ZrOS+ at elevated energy.  相似文献   

3.
溶液中甲醇和二氯亚砜的化学反应   总被引:2,自引:0,他引:2  
用B3LYP方法和SCIPCM模型(模拟溶剂效应)研究了甲醇和二氯亚砜在两种非极性(ε<15)和两种极性(ε>15)溶剂中的反应(最终产物为氯代甲烷和二氧化硫). 反应过程由反应(1)和反应(2)组成, CH3OS(O)Cl是反应(1)的主要产物和反应(2)的反应物. 反应(2)有“前面取代”(经过渡态TS3f)和“背后取代”(先经CH3OS(O)Cl的电离, 再经过渡态TS3b)两种机理. 计算表明, 在气相和四种溶剂中反应(1)和(2)都是放热反应, 反应(1)具有相同的反应途径(经过渡态→中间体→过渡态), 溶剂的极性对反应(2)有很大的影响. 在气相和非极性溶剂中, TS3f的能量比(CH3OSO++Cl-)离子对(中间体IM2)的能量低, 反应(2)应为前面取代机理; 在极性溶剂中, IM2和TS3b的能量都比TS3f低, 反应(2)应为背后取代机理.  相似文献   

4.
应用密度泛函理论DFT方法,在B3LYP/6-311G(d,p)水平上研究了不饱和类锗烯H2C=GeNaBr的结构及异构化反应.结果表明,不饱和类锗烯H2C=GeNaBr有3种平衡构型,其中非平面的p-配合物型构型能量最低,是其存在的主要构型.并对平衡构型间异构化反应的过渡态进行了计算,求得了转化势垒,预言了最稳定构型的振动频率和红外强度.  相似文献   

5.
The comprehensive mechanism survey on the gas‐phase reaction between nickel monoxide and methane for the formation of syngas, formaldehyde, methanol, water, and methyl radical has been investigated on the triplet and singlet state potential energy surfaces at the B3LYP/6‐311++G(3df, 3pd)//B3LYP/6‐311+G(2d, 2p) levels. The computation reveals that the singlet intermediate HNiOCH3 is crucial for the syngas formation, whereas two kinds of important reaction intermediates, CH3NiOH and HNiOCH3, locate on the deep well, while CH3NiOH is more energetically favorable than HNiOCH3 on both the triplet and singlet states. The main products shall be syngas once HNiOCH3 is created on the singlet state, whereas the main products shall be methyl radical if CH3NiOH is formed on both singlet and triplet states. For the formation of syngas, the minimal energy reaction pathway (MERP) is more energetically preferable to start on the lowest excited singlet state other than on the ground triplet state. Among the MERP for the formation of syngas, the rate‐determining step (RDS) is the reaction step for the singlet intermediate HNiOCH3 formation involving an oxidative addition of NiO molecule into the C? H bond of methane, with an energy barrier of 120.3 kJ mol?1. The syngas formation would be more effective under higher temperature and photolysis reaction condition. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

6.
The gas‐phase reaction mechanism between methane and rhodium monoxide for the formation of methanol, syngas, formaldehyde, water, and methyl radical have been studied in detail on the doublet and quartet state potential energy surfaces at the CCSD(T)/6‐311+G(2d, 2p), SDD//B3LYP/6‐311+G(2d, 2p), SDD level. Over the 300–1100 K temperature range, the branching ratio for the Rh(4F) + CH3OH channel is 97.5–100%, whereas the branching ratio for the D‐CH2ORh + H2 channel is 0.0–2.5%, and the branching ratio for the D‐CH2ORh + H2 channel is so small to be ruled out. The minimum energy reaction pathway for the main product methanol formation involving two spin inversions prefers to both start and terminate on the ground quartet state, where the ground doublet intermediate CH3RhOH is energetically preferred, and its formation rate constant over the 300–1100 K temperature range is fitted by kCH3RhOH = 7.03 × 106 exp(?69.484/RT) dm3 mol?1 s?1. On the other hand, the main products shall be Rh + CH3OH in the reactions of RhO + CH4, CH2ORh + H2, Rh + CO +2H2, and RhCH2 + H2O, whereas the main products shall be CH2ORh + H2 in the reaction of Rh + CH3OH. Meanwhile, the doublet intermediates H2RhOCH2 and CH3RhOH are predicted to be energetically favored in the reactions of Rh + CH3OH and CH2ORh + H2 and in the reaction of RhCH2 + H2O, respectively. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

7.
Møller-Plesset MP2/6-31G method was used to examine the gas-phase elimination of 2-substituted alkyl ethyl N,N-dimethylcarbamates. The results of these calculations support a concerted non-synchronous six-membered cyclic transition state mechanism for carbamates containing a Cβ–H bond at the alkyl side of the ester. These substrates produce the N,N-dimethylcarbamic acid and the corresponding olefin. The unstable intermediate, N,N-dimethylcarbamic acid, rapidly decomposes through a four-membered cyclic transition state to dimethylamine and CO2 gas. Correlation of the logarithm of theoretical rate coefficients against original Taft's σ* values gave an approximate straight line (ρ*=−1.39, r=0.9558 at 360 °C). In addition to this fact, when log krel is plotted against the theoretical log krel for 2-substituted ethyl N,N-dimethylcarbamates a reasonable straight line (r=0.9919 at 360 °C) is obtained, suggesting similar mechanism.  相似文献   

8.
The gas phase proton affinities of 5‐methylhydantoin and its thio derivatives were theoretically studied through the use of high‐level density functional theory calculations. The structure of all possible tautomers and their conformers were optimized at the B3LYP/6‐311+(d,p) level of theory. Final energies were obtained at the B3LYP/6‐311+(2df,2p) level. The imidazolidone derivatives 5‐methyl‐2,4‐dioxo imidazolidine, 5‐methyl‐2‐oxo‐4‐thio imidazolidine, 5‐methyl‐2‐thio‐4‐oxo imidazolidine, and 5‐methyl‐2,4‐dithio imidazolidine possess moderately strong proton affinities. Protonation at sulfur would be larger than protonation at oxygen. The most stable protonated forms of 2O4O and 2S4O have the proton attached to the heteroatom in position 2, whereas protonation of 2O4S and 2S4S preferentially takes place at position 4. The barriers for proton migration between the different tautomers are rather large. The energy decomposition analysis analysis of the O? H+ and S? H+ interactions suggests that the bonding interactions come mainly from the covalent bond formation. The contribution of the Coulomb attraction is rather small. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
用密度泛函方法 [B3LYP/6- 31 1G(d) ]研究了Si2 P2 分子的各种可能异构体的结构、能量和红外光谱 .结果表明 :Si2 P2 分子有 5个稳定的异构体 ,能量最低的异构体为具有P—P桥键的蝴蝶形结构 ,其次为具有Si—Si桥键的菱形结构 ,而具有Si—Si中心键的直线结构能量最高 .并进一步将Si2 P2 和C2 N2分子在结构和能量上的差异进行了比较和分析 .  相似文献   

10.
The gas-phase reaction mechanism between palladium monoxide and methane has been theoretically investigated on the singlet and triplet state potential energy surfaces (PESs) at the CCSD(T)/AVTZ//B3LYP/6-311+G(2d, 2p), SDD level. The major reaction channel leads to the products PdCH(2) + H(2)O, whereas the minor channel results in the products Pd + CH(3)OH, CH(2)OPd + H(2), and PdOH + CH(3). The minimum energy reaction pathway for the formation of main products (PdCH(2) + H(2)O), involving one spin inversion, prefers to start at the triplet state PES and afterward proceed along the singlet state PES, where both CH(3)PdOH and CH(3)Pd(O)H are the critical intermediates. Furthermore, the rate-determining step is RS-CH(3) PdOH → RS-2-TS1cb → RS-CH(2)Pd(H)OH with the rate constant of k = 1.48 × 10(12) exp(-93,930/RT). For the first C-H bond cleavage, both the activation strain ΔE(≠)(strain) and the stabilizing interaction ΔE(≠)(int) affect the activation energy ΔE(≠), with ΔE(≠)(int) in favor of the direct oxidative insertion. On the other hand, in the PdCH(2) + H(2) O reaction, the main products are Pd + CH(3)OH, and CH(3)PdOH is the energetically preferred intermediate. In the CH(2)OPd + H(2) reaction, the main products are Pd + CH(3)OH with the energetically preferred intermediate H(2)PdOCH(2). In the Pd + CH(3)OH reaction, the main products are CH(2)OPd + H(2), and H(2)PdOCH(2) is the energetically predominant intermediate. The intermediates, PdCH(2), H(2) PdCO, and t-HPdCHO are energetically preferred in the PdC + H(2), PdCO + H(2), and H(2)Pd + CO reactions, respectively. Besides, PdO toward methane activation exhibits higher reaction efficiency than the atom Pd and its first-row congener NiO.  相似文献   

11.
A systematic study was performed to examine the possibilities of the B3LYP DFT method in a dgdzvp full-electron basis and of the method including a pseudopotential for iodine compounds. The full-electron basis generally gives better agreement for X-I bond lengths and reaction enthalpies of iodination of organic compounds and equally good agreement in calculations of the IR vibrations of the X-I bond length compared with the studies using the pseudopotential. The full-electron basis also allows adequate calculations of the quadrupole coupling constants of iodine atoms and is generally characterized by smaller computing times.  相似文献   

12.
在B3LYP/6—31lG(d)水平上对可能的星际分子C3S^ 的各种异构体进行了理论计算研究,得到其几何构型、红外光谱和精确能量以利于实验室和星际观测,讨论了其星际含义,并与其中性分子C3S做了比较.结果表明:C3S^ 有3个稳定的异构体,包括线形、三元环和四元环几何构型.按热力学稳定的异构体依次是直线型具有C∞v对称性的CCCS^ (1),其次是具有CC桥键四元环构型的cC3S^ (2),能量最高是三元环构型具有CC环外键的C—cCCS^ (3)。  相似文献   

13.
The electronic and spatial structures of a broad spectrum of neutral compounds with X-Hal (X = N, O, Cl; Hal = Cl, Br, I) bonds and their protonated forms and of different electronic states of triiodide cation, I3 +, were determined from density functional B3LYP/6 311G* quantum chemical calculations. The effects of the structure of these compounds on the parameters of electrophilic reactivity were revealed and the thermochemical characteristics of homolytic and heterolytic X-Hal bond dissociation and of iodine transfer in hydroxyl-containing solvents were calculated. Due to low homolytic bond dissociation energies of X-I, the formation of molecular iodine and triiodide cation I3 + becomes thermodynamically favorable and the cation should act as iodinating agent alternative to acylhypoiodites and N-iodoimides. The solvation effects of MeOH and CH2Cl2 on the X-Hal bond homolysis and heterolysis were determined using the PCM model. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1280–1288, August, 2006.  相似文献   

14.
The Diels-Alder reaction of protonated N-benzyl imine of methyl glyoxylate with cyclopentadiene in different solvents gave mixtures of exo/endo adducts. The exo/endo selectivity of the reaction was elucidated by NMR experiments. Theoretical calculations by means of density functional theory (DFT) at the B3LYP/6-31G(d) level have also been performed to elucidate the molecular mechanism of this reaction. The DFT results suggest a highly asynchronous concerted mechanism, which in turn can explain the preferred exo stereoselectivity of the reaction. Inclusion of solvent effects enhances the exo selectivity, and this effect increases with the polarity of the solvent, in good agreement with the experimental findings.  相似文献   

15.
在B3LYP/6-311G(d)水平上对Si2CN的各种可能异构体进行了研究,得到了其几何构型,结果表明:Si2CN有11个稳定的异构体,能量最低的是直线型异构体SiCNSi1,其次是四元环构型具有SiC桥键,电子态为^2A″的cSiSiCN6,第三稳定的是具有CSiSi三元环和环外NC键的N-cCSiSi10^2A1,第四稳定的是四元环具有SiN桥键^2A″电子态异构体cSiSiCN7。  相似文献   

16.
錋氮(BN)及其团簇分子在材料科学中的重要性而引起广泛关注,BN纳米管、纳米线及其团簇已被合成并在对其结构与性质进行了理论研究[1-7]。BN二聚物包括线性、正方形和棱形BN-BN结构,在MP2水平上的理论预测单重态稳定性为菱形(D2h)大于正方形(D2h)大于线性(C∞v)[8],但作者未对优  相似文献   

17.
赵彦英  刘亚军  吴育飞  郑世钧 《化学学报》2002,60(11):1957-1964
使用密度泛函理论B3LYP方法和6-31G(d,p),6-31+G(d,p),6-311G(d,p)及6- 311+G(d,p)基组,分别对1-C_6H_(12)~+,2-C_6H_(12)~+和3-C_6H_(12)~+的各种构 象进行了几何构型优化,并在B3LYP/6-311G(d,p)水平上进行了频率分析计算,在 各优化构型上,使用B3LYP和MP2(full)方法进行了超精细结构的计算。计算的3- C_6H_(12)~+的超精细偶合常数比以往的计算结果更好;1-C_6H_(12)~+和2-C_6H_ (12)~+的超精细偶合常数目前尚无实验数据报道,本计算预言了它们的超精细偶合 常数和最稳定构型。  相似文献   

18.
赵红梅  刘鲲  孙成科  李宗和 《化学学报》2004,62(10):935-939
利用B3LYP方法,在6-31 G^ 基组下研究了在SiO2存在下的CH3ONO→CH3O NO解离反应.计算了全优化下的解离反应,以及固定SiO2的键长和键角做部分优化下的解离反应.在反应中SiO2与CH3ONO相接近,O-N键逐渐伸长,生成复合物,放出热量,进一步促进了CH3ONO中NO的解离.  相似文献   

19.
20.
The proton affinity on each of the possible sites in the antitumor 2‐(4‐aminophenyl)benzazoles has been calculated at the B3LYP/6‐311G** level of theory in the gas phase and in solution. The N3‐site of protonation is found to be strongly favored over the NH2‐site for the studied compounds both in gas phase and in solution. The stability of N3‐protonated species is explained by the resonance interaction of the NH2‐group with the heterocyclic ring. The potential energy surface (PES) for the protonation process was studied at the density functional theory (DFT)/B3LYP/6‐311++G** level of theory. Solvent effects on the PES were also examined using two models: Onsager self‐consistent field and polarizable continuum model (PCM). © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号