共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
环境温度对蓄冷式冷藏车箱体内部温度场与蓄冷材料释冷过程影响较大。本文以Na Cl水溶液为蓄冷材料,通过Solidworks建立蓄冷式冷藏车的物理模型,利用Gambit对物理模型进行网格划分,并采用Ansys软件对车内温度场和蓄冷材料相变过程进行模拟计算。结果表明:随着环境温度的升高,蓄冷板释冷过程加快,释放潜热时间缩短;车箱温度稳定在较高数值,且时间较短。环境温度为303K时,蓄冷材料完全融化为盐溶液需70.2h,车厢温度稳定在293K,维持时间为73.6h。环境温度与冷板温度温差较大,换热量较大,在计算工况下,热流密度为2.75W/h。 相似文献
4.
饱和颗粒土冻结过程的数值模拟 总被引:1,自引:0,他引:1
影响饱和土冻结过程的因素很多而且复杂,本文采用刚性冰模型对于持续补水的饱和颗粒土的冻结过程进行了一维数值模拟,分析了外载、导水系数以及土豹持水性对于冻结过程以及冻胀的影响,计算结果表明外载增加使得冻胀速度降低,较大的导水系数以及较好的持水性导致分凝冻胀量较大. 相似文献
5.
6.
7.
利用轻气炮对素混凝土材料进行了3种不同冲击速度下的动态力学性能实验,得到了时间-应力曲线,随后利用软件进行数值模拟,将模拟结果与实验结果进行比较,解释了飞片和靶板破坏过程中波的传播过程。通过分析发现:混凝土材料表现出明显的率相关性、滞后效应和应力波的衰减特征,这些与材料内部损伤的演化密切相关;混凝土材料在压缩波、边侧稀疏效应和左、右自由表面反射拉伸波的共同作用下,最终形成宏观破碎;实验中靶板尺寸设计合理,有效避免了边侧稀疏效应对锰铜压阻计测试信号的影响。 相似文献
8.
9.
为了适应数值模拟浅水涌波的需要,给出了冻结直角坐标系下的浅水波方程组系数矩阵的Roe平均法。通过对一维浅水波方程组的几种冻结法关于溃坝问题进行的数值实验比较。充分展示了Roe平均法在模拟涌波方面的优越性。 相似文献
10.
本文采用数值模拟的方法研究了盘管式蓄冷板的融化过程,分析了管道的偏心距和肋片尺寸对融化过程的影响。研究表明,随着偏心距的增加,融化速率加快。肋高越大,蓄冷板的融化速率越大,而肋宽对融化过程的影响可忽略不计。添加肋片减小了蓄冷板的最大释冷量,而改变偏心距并未改变蓄冷板的最大释冷量,且不同情况下的释冷量与液相率大致成线性相关。 相似文献
11.
利用三维分子动力学模拟方法,研究了纳米尺度水滴撞击冷壁面的结冰过程.数值模拟中,统计系统采用微正则系综,势能函数选用TIP4P/ice模型,温度校正使用速度定标法,牛顿运动方程的求解采用文莱特算法,水滴内部结冰过程则通过统计垂直方向水分子温度分布来判定.研究发现,当冷壁面温度降低时,水滴完全结冰的时间减小,但水滴降至壁面温度的时间却增大;同时随着壁面亲水性降低,水滴内部热传递速度减慢(尤其是冷壁面与水滴底端分子层间),水滴内部温度趋于均匀,但水滴完全结冰时间延长. 相似文献
12.
《低温与超导》2016,(3)
针对开架式气化器(ORV)建立4组不同海水液膜厚度下的换热管模型,基于Realizable k-ε及SolidificationMelting模型进行流固耦合传热计算,分析不同海水液膜厚度以及不同海水入口流速对换热管外海水结冰的影响。海水入口流速在0.5m/s~1m/s范围内变化时,海水入口流速越小,液膜厚度越薄,换热管外海水越易结冰;当液膜厚度为1mm、海水入口流速为0.5m/s时,结冰长度达到454mm。可见,换热管外海水结冰受液膜厚度与海水入口流速影响很大。海水从上往下流动过程中,换热管外海水结冰率逐渐增大,冰层逐渐增厚,且结冰重点区域位于换热管翅片缝隙及换热管连接处。因此在ORV实际运行中,为防止换热管结冰,应合理布置海水分布装置,并对换热管外翅片夹角、形状及换热管连接结构进行优化设计,以增强ORV传热效果。 相似文献
13.
14.
为利用液化天然气(LNG)的冷能实现海水冷冻淡化,研究了海水在超低温环境下的冷冻淡化机理,试验测试了海水在不同冷冻条件下的制冰淡化性能参数,分析了各因素对海水冷冻淡化过程的作用机理及性能影响,比较得出了该工艺系统的最优运行参数。该研究结果为基于LNG冷能的海水冷冻淡化系统工艺设计提供了重要的参考依据。 相似文献
15.
16.
17.
18.
冲击波作用下金属与气体界面将发生微喷混合现象,即金属表面产生的微喷射物质在气体中的输运过程.提出采用散体颗粒分布代替微喷初始状态,基于气体-颗粒两相流模型对微喷混合现象进行了模拟研究.数值模拟给出了微喷混合的动力学演化过程,分析了初始气体压力和颗粒尺寸因素对混合层的影响规律;在数值模拟中发现了微喷颗粒的气动破碎现象,这可导致颗粒尺度明显减小,成为影响微喷混合演化性质的重要物理因素.本文模拟结果与相关实验结果取得一致,初步表明,气粒两相流模型是模拟微喷混合过程的一种有效方法. 相似文献
19.
20.
A model is presented to simulate the cooling processes during tumor cryosurgery with different kinds of flows through the cryoprobe. The heat flux between the cryoprobe wall and the tumor, the heat transfer coefficient under different inflow conditions are obtained numerically. The impact of the inlet mass flow rate, gas volume fraction on these parameters is investigated. It is found that the heat transfer coefficient decreased significantly when inflow changed from two-phase annular flow to droplet flow, and to gas flow. The inlet gas volume fraction and flow velocity only significantly affect the freezing ability of the probe when the inflow is gas or in droplet phase. Simulation of the tumor temperature profiles under different flow conditions show that the heat transfer coefficient is a crucial parameter in temperature prediction during cryosurgery. Results indicate that when the cryoprobe wall is assumed at a constant temperature conventionally, the cooling effect could be overestimated. It would be more reasonable to use the constant wall heat transfer coefficient to simulate the cooling progress under a specific flow. 相似文献