首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
高温超导储能应用研究的新进展   总被引:7,自引:0,他引:7  
简要回顾了用于高温超导储能磁体的高温超导磁体材料的性能;重点介绍了近年来几种类型的高温超导储能磁体的研究新进展;然后分别介绍了Bi-2212和Bi-2223高温超导储能磁体的研究情况;最后简述了将来可能用YB-CO(或NdBCO)涂层导体材料设计在液氮温区运行的高温超导储能磁体。  相似文献   

2.
3.
35kJ高温超导磁储能系统的电流引线及其绝缘与导热结构   总被引:3,自引:0,他引:3  
介绍了制冷机直接冷却的35kJ/7kW高温超导磁储能系统电流引线的结构型式,以及它所采用的绝缘、导热截流结构.经实验验证,该电流引线的设计及其绝缘与导热结构是可行的.  相似文献   

4.
阐述了120k J高温超导储能磁体的高温超导带选择及磁体主要参数。为确定120k J高温超导储能磁体绕组的通电方式,比较了30个高温超导双饼线圈两种连接方式在225A电流下的磁场特性。为满足杜瓦强度要求,针对120k J高温超导储能磁体杜瓦开展了结构设计及强度分析,结果表明,杜瓦满足高温超导绕组吊挂对其强度的要求。  相似文献   

5.
高温超导磁悬浮飞轮储能系统样机   总被引:1,自引:0,他引:1  
在日益严峻的能源问题背景下,为展示无源高温超导磁悬浮技术在能量储存领域的应用前景,我们设计制作了一台全高温超导磁悬浮形式的飞轮储能样机.样机主要由高温超导磁悬浮轴承、飞轮转子、永磁电机和电路控制及负载部分组成.上下两个轴向型高温超导磁悬浮轴承用于悬浮和稳定飞轮转轴,直径200mm重量1.4kg的飞轮转子作为储能载体,最高可实现13000r/min的转速.在演示运行中,采用灯泡作为负载,该样机完成了从电能→机械能→电能的相互转换.  相似文献   

6.
针对在高温超导储能磁体设计中多物理场耦合分析问题,本文提出了一种面向有限元分析的解耦优化设计方法,并以一台150kJ/100kW高温超导磁储能磁体为例进行了有限元仿真验证。本文首先梳理了高温超导储能磁体的多场耦合关系,提出在材料物性关系和多场耦合关系中分别以温度和电磁场为主导因素;进而归纳得出,磁体易失超危险区分布及解耦分析中多物理场数据流向设计,是设计过程中的关键问题,并给出了分析策略;最后按照逻辑合理、工作量最省的原则提出了解耦综合优化主流程,及针对易失超危险区的优化建议。  相似文献   

7.
超级储能系统(SMES)的特点是,储能密度大,超导电阻为零,并且容易控制.这使得超导储能不仅能在微秒、毫秒放电领域与电容器竞争,在秒级放电领域与旋转储能装置和电池组竞争,而且使它能在其他许多领域大显身手.本文介绍了超导储能系统(SMES)用斩波器的原理和特点.根据超导储能磁体的要求,提出了一种适用于超导储能用斩波器的电路拓扑结构,并分析了斩波器的工作原理和特点.通过计算机仿真验证了峰值电流控制方式的正确性.  相似文献   

8.
针对现有飞轮储能系统中的机械摩擦等问题,提出了无轴承式高温超导飞轮储能装置。储能装置利用高温超导块材料的迈斯纳效应使安装有永磁体的飞轮悬浮,实现无轴承。定子侧安装有三相对称绕组与飞轮构成同步电机结构。利用陀螺仪效应,使飞轮高速旋转,实现储能。利用有限元分析软件,对超导块与永磁体间的作用力进行仿真分析,对在不同尺寸的圆柱永磁体下的悬浮力进行比较。在此基础上,进行飞轮和装置结构设计,并对储能装置储能性能进行了测试,验证了方案的可行性。  相似文献   

9.
电压补偿型高温超导限流-储能系统是一种新型的超导电力装置,它具有暂态时限制短路电流、稳态时储存能量同时补偿电压不平衡和改善系统谐波的功能.本文介绍了电压补偿型高温超导限流—储能系统的原理和拓扑结构,利用MatLab仿真工具对其改善电力系统电能质量的功能进行了仿真,并通过DSP芯片TMS240实现了该功能的实验研究,验证了仿真结果的可行性.  相似文献   

10.
舰船电力系统用1MJ高温超导环型储能磁体的设计研究   总被引:3,自引:0,他引:3  
介绍了舰船电力系统用 1MJ环型高温超导储能磁体的设计优化步骤 ,进行了环型磁体线圈最大磁场的优化、环型磁体单元尺寸的优化和环型磁体单元数目的优化 ,并得出了合适的磁体线圈尺寸。磁体线圈上的最大磁感应强度为 3-4 T,单元数目较大的环型磁体适用于 1MJHTS- SMES  相似文献   

11.
电压补偿型高温超导限流-储能系统是一种新型的超导电力装置,它具有暂态时限制短路电流、稳态时储存能量同时补偿电压不平衡和改善系统谐波的功能.本文介绍了电压补偿型高温超导限流-储能系统的原理和拓扑结构,利用MatLab仿真工具对其改善电力系统电能质量的功能进行了仿真,并通过DSP芯片TMS240实现了该功能的实验研究,验证了仿真结果的可行性.  相似文献   

12.
300MJ环状高温超导储能磁体的优化设计   总被引:1,自引:0,他引:1  
介绍了300M J环状高温超导储能磁体优化设计的步骤。为了提高优化设计的效率,减少常规寻优方法的计算量,将改进的粒子群优化算法引入到高温超导储能磁体的优化设计中,给出了用B i-2223超导线材进行300M J环状储能磁体设计的优化结果,并采用商用电磁场有限元分析软件ANSYS对本文关于环状螺线管系统磁场、能量计算方法的正确性进行了验证。  相似文献   

13.
储能器是一种储存能量的装置,随着高温超导悬浮轴承运用到飞轮储能器中,储能效率得到了大大的提高。它的主要结构是由高温超导体和永磁体组成。文中提出一种全新高温超导悬浮轴承,并研究其的力学性能,为新型超导悬浮轴承的研究与开发做好了基础准备。  相似文献   

14.
电力系统动模实验用50kJ高温超导储能磁体的设计研究   总被引:1,自引:0,他引:1  
介绍了 2 0 K下对电力系统动模实验用 5 0 k J高温超导储能磁体的设计步骤 ,给出了用 Bi- 2 2 2 3单根超导带进行5 0 k J磁体线圈的设计和优化结果 ,分析了高温超导体的各向异性对磁体临界电流的影响和磁体漏磁的分布 ,并讨论了用单根高温超导带组成的超导体和用多根高温超导带组成的超导体设计的储能磁体的特性参数对改善电力系统动态特性的能力的影响。  相似文献   

15.
分析了超导磁储能直接冷却的特点,对G-M制冷机应用于超导磁储能直接冷却进行了方案设计和负荷计算;针对应用于超导磁储能冷却的G-M制冷机分析了热力参数对制冷系数和熵产率的影响;根据高温超导磁体冷却的实验结果,研究了G-M制冷机在磁储能直接冷却应用中的关键技术问题。  相似文献   

16.
高温超导储能(High Temperature Superconducting Magnetic Energy Storage,HTS-SMES)磁体装置可有效提高电力系统的稳定性、改善电能质量。储能磁体是储能装置的关键部分,为提高超导储能磁体的热稳定性,通常在超导磁体中增设铜导冷片。磁体充放电时在导冷片上会产生涡流损耗,损耗的大小严重影响磁体的超导特性,因此降低导冷结构的涡流损耗是提高磁体热稳定性的关键因素。运用有限元法(FEM)分析导冷片上的涡流损耗,在Ansoft仿真软件三维瞬态场中模拟磁体充电过程中导冷片的涡流损耗,结果表明:充电模式下,完整导冷片涡流损耗为1.45W;沿径向开缺口处理后涡流损耗为0.107W;导冷片内环、中部、外环开齿槽后涡流损耗分别为0.49、0.41、0.1242W。由此可得,对于导冷片的开齿槽处理可显著降低涡流损耗,且内部开齿槽的效果最佳。  相似文献   

17.
高温超导磁体临界电流的磁矢量分析法及其验证   总被引:1,自引:1,他引:0  
临界电流是高温超导磁体的关键参数,文中提出了一种名为"磁矢量分析法"的高温超导临界电流计算方法。这种方法以高温超导带材性能测试结果为依据,以有限元仿真软件为手段,通过对计算高温超导磁体内部电磁感应强度矢量的分布,采用插值运算来确定高温超导磁体的临界电流。通过在77K温度下进行1:1的磁体实验,磁矢量分析法的可行性得到了验证。  相似文献   

18.
利用单通道高温超导磁梯度计获取心磁地图   总被引:4,自引:0,他引:4       下载免费PDF全文
根据自己研制的单通道高温超导rfSQUID磁梯度计在人体胸前测得的高信噪比的心磁信号,通过线性插值和高阶拟合,获得了人体心脏的一系列时序等强磁场地图,为高温超导SQUID磁强计、梯度计的心磁测量用于心脏病早期诊断和病理研究的进一步开展提供了思路和方向.  相似文献   

19.
高温超导磁通跳跃过程中的磁致伸缩效应   总被引:1,自引:0,他引:1  
文中基于超导磁通动力学理论,考虑电磁力与热激活对磁通运动的影响,基本模型包括由等效电阻率随超导体温度和磁场变化的磁通扩散方程,以及比热随超导体温度变化的热传导方程组成.在此基础上,用数值方法求解了这组非线性磁热耦合方程,主要研究了有磁通跳跃状发生状态时环境温度和外磁场速度对于高温超导磁致伸缩的影响.结果表明:磁通进入超...  相似文献   

20.
利用单通道高温超导磁梯度计获取心磁地图   总被引:3,自引:0,他引:3       下载免费PDF全文
根据自己研制的单通道高温超导rfSQUID磁梯度计在人体胸前测得的高信噪比的心磁信号,通过线性插值和高阶拟合,获得了人体心脏的一系列时序等强磁场地图,为高温超导SQUID磁强计、梯度计的心磁测量用于心脏病早期诊断和病理研究的进一步开展提供了思路和方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号