首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
介绍了超宽带混频器的研制、设计思想及测试结果。该混频器具有宽频带、高隔离、动态范围宽、体积小等特点。  相似文献   

2.
针对亚毫米波混频二极管管对电路模型不够精确的问题,采用场路结合协同分析,将进出二极管的频率信号分类处理,建立了一种应用于亚毫米波分谐波混频器电路的反向并联二极管对精确电路模型。基于获取的管对精确电路模型,建立了全局性的分谐波混频器电路的集总元件等效电路模型,设计并实现了一款183 GHz分谐波混频器。测试结果表明混频器在本振频率为92 GHz、功率为2 mW,射频频率176~192 GHz范围内,双边带变频损耗小于6.8 dB,等效噪声温度小于800 K,在182 GHz测得最小双边带变频损耗为4.9 dB,与仿真数据吻合较好。  相似文献   

3.
针对亚毫米波混频二极管管对电路模型不够精确的问题,采用场路结合协同分析,将进出二极管的频率信号分类处理,建立了一种应用于亚毫米波分谐波混频器电路的反向并联二极管对精确电路模型。基于获取的管对精确电路模型,建立了全局性的分谐波混频器电路的集总元件等效电路模型,设计并实现了一款183GHz分谐波混频器。测试结果表明混频器在本振频率为92GHz、功率为2mW,射频频率176~192GHz范围内,双边带变频损耗小于6.8dB,等效噪声温度小于800K,在182GHz测得最小双边带变频损耗为4.9dB,与仿真数据吻合较好。  相似文献   

4.
利用模式耦合理论分析了声光模式转换,并对声光可调谐滤波器的滤波带宽、调谐范围、驱动功率等性能参数进行分析计算。设计并制作出窄带集成声光可调谐滤波器(IAOTF)样品,搭建相应的IAOTF测试平台,得到中心波长在1.55μm,滤波带宽达到0.85 nm,波长调谐范围达到80 nm,驱动功率低于40mW的IAOTF。并对进一步压缩滤波带宽和旁瓣效应提出了解决途径。  相似文献   

5.
设计并研制了一种基于复合腔结构的波长可调谐、瓦级连续输出的橙红色激光器.该激光器是由半导体激光侧泵Nd∶GdVO_4晶体产生p-偏振1 062.9nm基频光的谐振腔和使用周期性极化晶体MgO∶PPLN(三个极化周期为29.0μm、29.8μm和30.8μm)的单共振光学参量振荡器组成.在两个谐振腔的重叠区域,利用Ⅱ类临界相位匹配KTP晶体对s-偏振信号光与p-偏振1 062.9nm基频光进行腔内和频.通过对MgO∶PPLN晶体进行三个不同极化周期的调谐和30℃~200℃范围内的温度调谐,在三个波段(613.4~619.2nm@29.0μm、620.2~628.9nm@29.8μm和634.4~649.1nm@30.8μm)获得了波长可调谐的橙红色激光连续输出,并在相应波段(3 980.0~3 758.5nm@29.0μm、3 714.2~3 438.3nm@29.8μm和3 278.0~2 940.2nm@30.8μm)获得了波长可调谐的中红外闲频光的连续输出.在30℃最低调谐温度,通过改变晶体的极化周期,在613.4nm、620.2nm和634.4nm处测得最大连续输出功率分别为1.52 W、2.21 W和3.03 W,对应的三束闲频光最大连续输出功率分别为2.36 W@3 980.0nm、3.17 W@3 714.2nm和4.13 W@3 278.0nm.  相似文献   

6.
芯片级原子钟主要包括射频模块、物理封装模块以及其他的外围控制模块。射频模块的设计关系到芯片级原子钟的短期稳定度,所以射频模块在芯片级原子钟的设计时是非常重要的一部分。本文利用数字锁相环技术实现频率为4.596 GHz的射频源,射频源由三部分组成,包括小数分频频率综合器、压控振荡器和环路滤波器。数字锁相环具有相位噪声低,频谱稳定度高等特点。此外,由于小数分频频率综合器是可编程的,可以通过配置N分频器与R分频器实现输出频率的快速扫描。与此同时,根据相关公式,可以计算出三阶无源环路滤波器的近似参数值,所设计的环路滤波器具有300 kHz的环路带宽以及55的相位裕度。最后,整个基于数字锁相环技术实现的射频源通过仿真、硬件实现以及测试。测试结果显示,射频源的相位噪声为-74.02 dBc/Hz@300 Hz,符合芯片级原子钟射频源的设计要求。  相似文献   

7.
芯片级原子钟主要包括射频模块、物理封装模块以及其他的外围控制模块。射频模块的设计关系到芯片级原子钟的短期稳定度,所以射频模块在芯片级原子钟的设计时是非常重要的一部分。本文利用数字锁相环技术实现频率为4.596 GHz的射频源,射频源由三部分组成,包括小数分频频率综合器、压控振荡器和环路滤波器。数字锁相环具有相位噪声低,频谱稳定度高等特点。此外,由于小数分频频率综合器是可编程的,可以通过配置N分频器与R分频器实现输出频率的快速扫描。与此同时,根据相关公式,可以计算出三阶无源环路滤波器的近似参数值,所设计的环路滤波器具有300 kHz的环路带宽以及55的相位裕度。最后,整个基于数字锁相环技术实现的射频源通过仿真、硬件实现以及测试。测试结果显示,射频源的相位噪声为-74.02 dBc/Hz@300 Hz,符合芯片级原子钟射频源的设计要求。  相似文献   

8.
芯片级原子钟主要包括射频模块、物理封装模块以及其他的外围控制模块。射频模块的设计关系到芯片级原子钟的短期稳定度,所以射频模块在芯片级原子钟的设计时是非常重要的一部分。本文利用数字锁相环技术实现频率为4.596GHz的射频源,射频源由三部分组成,包括小数分频频率综合器、压控振荡器和环路滤波器。数字锁相环具有相位噪声低,频谱稳定度高等特点。此外,由于小数分频频率综合器是可编程的,可以通过配置N分频器与R分频器实现输出频率的快速扫描。与此同时,根据相关公式,可以计算出三阶无源环路滤波器的近似参数值,所设计的环路滤波器具有300kHz的环路带宽以及55°的相位裕度。最后,整个基于数字锁相环技术实现的射频源通过仿真、硬件实现以及测试。测试结果显示,射频源的相位噪声为-74.02dBc/Hz@300Hz,符合芯片级原子钟射频源的设计要求。  相似文献   

9.
介绍了10MeV/20kW大功率辐照加速器的设计.该加速器采用返波型行波加速结构加速管,综合了常规行波加速结构微波反射小、频率稳定性好和驻波加速结构分流阻抗高的优点.加速器工作于S波段,中心频率为2856MHz.利用自编的模拟程序AccDesign进行物理设计,设计输出电子束能量为1OMeV,脉冲流强300mA,加速管总长1.5m,模拟计算结果显示微波至电子束的转换效率为66%.同时利用计算机仿真程序对加速腔的温度和应力分布进行了计算,得到了微波功率损耗对加速腔频率的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号