首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scaled Optimal Path Trust-Region Algorithm   总被引:3,自引:0,他引:3  
Trust-region algorithms solve a trust-region subproblem at each iteration. Among the methods solving the subproblem, the optimal path algorithm obtains the solution to the subproblem in full-dimensional space by using the eigenvalues and eigenvectors of the system. Although the idea is attractive, the existing optimal path method seems impractical because, in addition to factorization, it requires either the calculation of the full eigensystem of a matrix or repeated factorizations of matrices at each iteration. In this paper, we propose a scaled optimal path trust-region algorithm. The algorithm finds a solution of the subproblem in full-dimensional space by just one Bunch–Parlett factorization for symmetric matrices at each iteration and by using the resulting unit lower triangular factor to scale the variables in the problem. A scaled optimal path can then be formed easily. The algorithm has good convergence properties under commonly used conditions. Computational results for small-scale and large-scale optimization problems are presented which show that the algorithm is robust and effective.  相似文献   

2.
Tensor is a hot topic in the past decade and eigenvalue problems of higher order tensors become more and more important in the numerical multilinear algebra. Several methods for finding the Z-eigenvalues and generalized eigenvalues of symmetric tensors have been given. However, the convergence of these methods when the tensor is not symmetric but weakly symmetric is not assured. In this paper, we give two convergent gradient projection methods for computing some generalized eigenvalues of weakly symmetric tensors. The gradient projection method with Armijo step-size rule (AGP) can be viewed as a modification of the GEAP method. The spectral gradient projection method which is born from the combination of the BB method with the gradient projection method is superior to the GEAP, AG and AGP methods. We also make comparisons among the four methods. Some competitive numerical results are reported at the end of this paper.  相似文献   

3.
This study presents a novel adaptive trust-region method for solving symmetric nonlinear systems of equations. The new method uses a derivative-free quasi-Newton formula in place of the exact Jacobian. The global convergence and local quadratic convergence of the new method are established without the nondegeneracy assumption of the exact Jacobian. Using the compact limited memory BFGS, we adapt a version of the new method for solving large-scale problems and develop the dogleg scheme for solving the associated trust-region subproblems. The sufficient decrease condition for the adapted dogleg scheme is established. While the efficiency of the present trust-region approach can be improved by using adaptive radius techniques, utilizing the compact limited memory BFGS adjusts this approach to handle large-scale symmetric nonlinear systems of equations. Preliminary numerical results for both medium- and large-scale problems are reported.  相似文献   

4.
In this paper, an algorithm based on a shifted inverse power iteration for computing generalized eigenvalues with corresponding eigenvectors of a large scale sparse symmetric positive definite matrix pencil is presented. It converges globally with a cubic asymptotic convergence rate, preserves sparsity of the original matrices and is fully parallelizable. The algebraic multilevel itera-tion method (AMLI) is used to improve the efficiency when symmetric positive definite linear equa-tions need to be solved.  相似文献   

5.
Finding the maximum eigenvalue of a symmetric tensor is an important topic in tensor computation and numerical multilinear algebra. In this paper, we introduce a new class of structured tensors called W‐tensors, which not only extends the well‐studied nonnegative tensors by allowing negative entries but also covers several important tensors arising naturally from spectral hypergraph theory. We then show that finding the maximum H‐eigenvalue of an even‐order symmetric W‐tensor is equivalent to solving a structured semidefinite program and hence can be validated in polynomial time. This yields a highly efficient semidefinite program algorithm for computing the maximum H‐eigenvalue of W‐tensors and is based on a new structured sums‐of‐squares decomposition result for a nonnegative polynomial induced by W‐tensors. Numerical experiments illustrate that the proposed algorithm can successfully find the maximum H‐eigenvalue of W‐tensors with dimension up to 10,000, subject to machine precision. As applications, we provide a polynomial time algorithm for computing the maximum H‐eigenvalues of large‐size Laplacian tensors of hyperstars and hypertrees, where the algorithm can be up to 13 times faster than the state‐of‐the‐art numerical method introduced by Ng, Qi, and Zhou in 2009. Finally, we also show that the proposed algorithm can be used to test the copositivity of a multivariate form associated with symmetric extended Z‐tensors, whose order may be even or odd.  相似文献   

6.
The symmetric tensor decomposition problem is a fundamental problem in many fields, which appealing for investigation. In general, greedy algorithm is used for tensor decomposition. That is, we first find the largest singular value and singular vector and subtract the corresponding component from tensor, then repeat the process. In this article, we focus on designing one effective algorithm and giving its convergence analysis. We introduce an exceedingly simple and fast algorithm for rank-one approximation of symmetric tensor decomposition. Throughout variable splitting, we solve symmetric tensor decomposition problem by minimizing a multiconvex optimization problem. We use alternating gradient descent algorithm to solve. Although we focus on symmetric tensors in this article, the method can be extended to nonsymmetric tensors in some cases. Additionally, we also give some theoretical analysis about our alternating gradient descent algorithm. We prove that alternating gradient descent algorithm converges linearly to global minimizer. We also provide numerical results to show the effectiveness of the algorithm.  相似文献   

7.
本文利用函数平均权重的非单调技术以及自适应信赖域方法,提出一个解非线性方程组的非单调自适应信赖域法.并在适当假设条件下,讨论了算法的全局收敛性.数值试验表明了算法是有效的.  相似文献   

8.
王珏钰  顾超  朱德通 《数学学报》1936,63(6):601-620
本文给出了一种新的多维滤子算法结合非单调信赖域策略解线性约束优化.目标函数及其投影梯度的分量组成了新的多维滤子,并且与信赖域半径有关.当信赖域半径充分小时,新的滤子能接受试探点,避免算法无限循环.非单调信赖域策略保证了新算法的整体收敛性.目前为止,多维滤子算法局部收敛性分析仍然没有解决,在合理假设下,我们分析了新算法的局部超线性收敛性.数值结果验证了算法的有效性.  相似文献   

9.
In this paper, we reinvestigate the trust-region method by reformulating its subproblem: the trust-region radius is guided by gradient information at the current iteration and is self-adaptively adjusted. A trust-region algorithm based on the proposed subproblem is proved to be globally convergent. Moreover, the superlinear convergence of the new algorithm is shown without the condition that the Hessian of the objective function at the solution be positive definite. Preliminary numerical results indicate that the performance of the new method is notable. The authors thank the Associate Editor and two anonymous referees for valuable comments and suggestions. This work was supported by the National Science Foundation of China, Grant 70302003. Communicated by T. Rapcsak  相似文献   

10.
Z‐eigenvalues of tensors, especially extreme ones, are quite useful and are related to many problems, such as automatic control, quantum physics, and independent component analysis. For supersymmetric tensors, calculating the smallest/largest Z‐eigenvalue is equivalent to solving a global minimization/maximization problem of a homogenous polynomial over the unit sphere. In this paper, we utilize the sequential subspace projection method (SSPM) to find extreme Z‐eigenvalues and the corresponding Z‐eigenvectors. The main idea of SSPM is to form a 2‐dimensional subspace at the current point and then solve the original optimization problem in the subspace. SSPM benefits from the fact that the 2‐dimensional subproblem can be solved by a direct method. Global convergence and linear convergence are established for supersymmetric tensors under certain assumptions. Preliminary numerical results over several testing problems show that SSPM is very promising. Besides, the globalization strategy of random phase can be easily incorporated into SSPM, which promotes the ability to find extreme Z‐eigenvalues. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The inverse-free preconditioned Krylov subspace method of Golub and Ye [G.H. Golub, Q. Ye, An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems, SIAM J. Sci. Comp. 24 (2002) 312-334] is an efficient algorithm for computing a few extreme eigenvalues of the symmetric generalized eigenvalue problem. In this paper, we first present an analysis of the preconditioning strategy based on incomplete factorizations. We then extend the method by developing a block generalization for computing multiple or severely clustered eigenvalues and develop a robust black-box implementation. Numerical examples are given to illustrate the analysis and the efficiency of the block algorithm.  相似文献   

12.
A finite iterative algorithm is proposed to solve a class of complex generalized Sylvester tensor equations. The properties of this proposed algorithm are discussed based on a real inner product of two complex tensors and the finite convergence of this algorithm is obtained. Two numerical examples are offered to illustrate the effectiveness of the proposed algorithm.  相似文献   

13.
A new algorithm for solving smooth large-scale minimization problems with bound constraints is introduced. The way of dealing with active constraints is similar to the one used in some recently introduced quadratic solvers. A limited-memory multipoint symmetric secant method for approximating the Hessian is presented. Positive-definiteness of the Hessian approximation is not enforced. A combination of trust-region and conjugate-gradient approaches is used to explore useful information. Global convergence is proved for a general model algorithm. Results of numerical experiments are presented.  相似文献   

14.
In this paper, we mainly focus on new inclusion sets for eigenvalues of a tensor. First, we propose new inclusion sets for eigenvalues of a tensor, which are sharper than some existing inclusion sets, and obtain the law of distribution of the number of eigenvalues for a tensor. Second, two new classes of tensors are introduced. Third, some bounds on the spectral radii for nonnegative tensors are given. Fourth, some checkable sufficient conditions for the positive definiteness (positive semidefiniteness) of some classes of even-order real symmetric tensors are obtained.  相似文献   

15.
In this paper, a trust-region procedure is proposed for the solution of nonlinear equations. The proposed approach takes advantages of an effective adaptive trust-region radius and a nonmonotone strategy by combining both of them appropriately. It is believed that selecting an appropriate adaptive radius based on a suitable nonmonotone strategy can improve the efficiency and robustness of the trust-region frameworks as well as decrease the computational cost of the algorithm by decreasing the required number subproblems that must be solved. The global convergence and the local Q-quadratic convergence rate of the proposed approach are proved. Preliminary numerical results of the proposed algorithm are also reported which indicate the promising behavior of the new procedure for solving the nonlinear system.  相似文献   

16.
Adaptive regularized framework using cubics has emerged as an alternative to line-search and trust-region algorithms for smooth nonconvex optimization, with an optimal complexity among second-order methods. In this paper, we propose and analyze the use of an iteration dependent scaled norm in the adaptive regularized framework using cubics. Within such a scaled norm, the obtained method behaves as a line-search algorithm along the quasi-Newton direction with a special backtracking strategy. Under appropriate assumptions, the new algorithm enjoys the same convergence and complexity properties as adaptive regularized algorithm using cubics. The complexity for finding an approximate first-order stationary point can be improved to be optimal whenever a second-order version of the proposed algorithm is regarded. In a similar way, using the same scaled norm to define the trust-region neighborhood, we show that the trust-region algorithm behaves as a line-search algorithm. The good potential of the obtained algorithms is shown on a set of large-scale optimization problems.  相似文献   

17.
本文给出一个求解非线性对称方程组问题的修改的信赖域方法,在适当的条件下我们将建立此方法的全局收敛性.对给定的问题而言,数值结果表明此方法是有效的.  相似文献   

18.
In this paper, we propose a fast algorithm for computing the spectral radii of symmetric nonnegative tensors. In particular, by this proposed algorithm, we are able to obtain the spectral radii of weakly reducible symmetric nonnegative tensors without requiring the partition of the tensors. As we know, it is very costly to determine the partition for large‐sized weakly reducible tensors. Numerical results are reported to show that the proposed algorithm is efficient and also able to compute the spectral radii of large‐sized tensors. As an application, we present an algorithm for testing the positive definiteness of Z‐tensors. By this algorithm, it is guaranteed to determine the positive definiteness for any Z‐tensor.  相似文献   

19.
On the superlinear local convergence of a filter-SQP method   总被引:5,自引:0,他引:5  
Transition to superlinear local convergence is shown for a modified version of the trust-region filter-SQP method for nonlinear programming introduced by Fletcher, Leyffer, and Toint [8]. Hereby, the original trust-region SQP-steps can be used without an additional second order correction. The main modification consists in using the Lagrangian function value instead of the objective function value in the filter together with an appropriate infeasibility measure. Moreover, it is shown that the modified trust-region filter-SQP method has the same global convergence properties as the original algorithm in [8].Mathematics Subject Classification (2000): 90C55, 65K05, 90C30  相似文献   

20.
《Applied Mathematical Modelling》2014,38(11-12):3003-3015
This study presents a new trust-region procedure to solve a system of nonlinear equations in several variables. The proposed approach combines an effective adaptive trust-region radius with a nonmonotone strategy, because it is believed that this combination can improve the efficiency and robustness of the trust-region framework. Indeed, it decreases the computational cost of the algorithm by decreasing the required number of subproblems to be solved. The global and the quadratic convergence of the proposed approach is proved without any nondegeneracy assumption of the exact Jacobian. Preliminary numerical results indicate the promising behavior of the new procedure to solve systems of nonlinear equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号