首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we investigate the relationship between deep neural networks (DNN) with rectified linear unit (ReLU) function as the activation function and continuous piecewise linear (CPWL) functions, especially CPWL functions from the simplicial linear finite element method (FEM). We first consider the special case of FEM. By exploring the DNN representation of its nodal basis functions, we present a ReLU DNN representation of CPWL in FEM. We theoretically establish that at least $2$ hidden layers are needed in a ReLU DNN to represent any linear finite element functions in $\Omega \subseteq \mathbb{R}^d$ when $d\ge2$. Consequently, for $d=2,3$ which are often encountered in scientific and engineering computing, the minimal number of two hidden layers are necessary and sufficient for any CPWL function to be represented by a ReLU DNN. Then we include a detailed account on how a general CPWL in $\mathbb R^d$ can be represented by a ReLU DNN with at most $\lceil\log_2(d+1)\rceil$ hidden layers and we also give an estimation of the number of neurons in DNN that are needed in such a representation. Furthermore, using the relationship between DNN and FEM, we theoretically argue that a special class of DNN models with low bit-width are still expected to have an adequate representation power in applications. Finally, as a proof of concept, we present some numerical results for using ReLU DNNs to solve a two-point boundary problem to demonstrate the potential of applying DNN for numerical solution of partial differential equations.  相似文献   

2.
用在线梯度法训练积单元神经网络的收敛性分析   总被引:1,自引:0,他引:1  
<正>1引言仅由加和单元构成的传统前向神经网络已经广泛应用于模式识别及函数逼近等领域.但在处理比较复杂的问题时,这种网络往往需要补充大量的隐节点,这样就不可避免地增  相似文献   

3.
A novel method is proposed to compute the Bayes estimate for a logistic Gaussian process prior for density estimation. The method gains speed by drawing samples from the posterior of a finite-dimensional surrogate prior, which is obtained by imputation of the underlying Gaussian process. We establish that imputation results in quite accurate computation. Simulation studies show that accuracy and high speed can be combined. This fact, along with known flexibility of the logistic Gaussian priors for modeling smoothness and recent results on their large support, makes these priors and the resulting density estimate very attractive.  相似文献   

4.
The normal inverse Gaussian (NIG) distribution is a promising alternative for modelling financial data since it is a continuous distribution that allows for skewness and fat tails. There is an increasing number of applications of the NIG distribution to financial problems. Due to the complicated nature of its density, estimation procedures are not simple. In this paper we propose Bayesian estimation for the parameters of the NIG distribution via an MCMC scheme based on the Gibbs sampler. Our approach makes use of the data augmentation provided by the mixture representation of the distribution. We also extend the model to allow for modelling heteroscedastic regression situations. Examples with financial and simulated data are provided. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Very often, one needs to perform (classical or Bayesian) inference, when essentially nothing is known about the distribution of the dependent variable given certain covariates. The paper proposes to approximate the unknown distribution by its non-parametric counterpart—a step function—and treat the points of the support and the corresponding density values, as parameters, whose posterior distributions should be determined based on the available data. The paper proposes distributions should be determined based on the available data. The paper proposes Markov chain Monte Carlo methods to perform posterior analysis, and applies the new method to an analysis of stock returns. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Hamiltonian Monte Carlo (HMC) has been progressively incorporated within the statistician’s toolbox as an alternative sampling method in settings when standard Metropolis–Hastings is inefficient. HMC generates a Markov chain on an augmented state space with transitions based on a deterministic differential flow derived from Hamiltonian mechanics. In practice, the evolution of Hamiltonian systems cannot be solved analytically, requiring numerical integration schemes. Under numerical integration, the resulting approximate solution no longer preserves the measure of the target distribution, therefore an accept–reject step is used to correct the bias. For doubly intractable distributions—such as posterior distributions based on Gibbs random fields—HMC suffers from some computational difficulties: computation of gradients in the differential flow and computation of the accept–reject proposals poses difficulty. In this article, we study the behavior of HMC when these quantities are replaced by Monte Carlo estimates. Supplemental codes for implementing methods used in the article are available online.  相似文献   

7.
Gaussian process models have been widely used in spatial statistics but face tremendous modeling and computational challenges for very large nonstationary spatial datasets. To address these challenges, we develop a Bayesian modeling approach using a nonstationary covariance function constructed based on adaptively selected partitions. The partitioned nonstationary class allows one to knit together local covariance parameters into a valid global nonstationary covariance for prediction, where the local covariance parameters are allowed to be estimated within each partition to reduce computational cost. To further facilitate the computations in local covariance estimation and global prediction, we use the full-scale covariance approximation (FSA) approach for the Bayesian inference of our model. One of our contributions is to model the partitions stochastically by embedding a modified treed partitioning process into the hierarchical models that leads to automated partitioning and substantial computational benefits. We illustrate the utility of our method with simulation studies and the global Total Ozone Matrix Spectrometer (TOMS) data. Supplementary materials for this article are available online.  相似文献   

8.
An algorithm of continuous stage-space MCMC method for solving algebra equation f(x)=0 is given. It is available for the case that the sign of f(x) changes frequently or the derivative f‘ (x) does not exist in the neighborhood of the root,while the Newton method is hard to work. Let n be the number of random variables created by computer in our algorithm.Then after rn=O(n) transactions from the initial value Xo,X^* can be got such that [f(x^*)|<e-^cm|f(xo)|by choosing suitable positive constant c. An illustration is also given with the discussion of convergence by adjusting the parameters in the algorithm.  相似文献   

9.
Dynamically rescaled Hamiltonian Monte Carlo is introduced as a computationally fast and easily implemented method for performing full Bayesian analysis in hierarchical statistical models. The method relies on introducing a modified parameterization so that the reparameterized target distribution has close to constant scaling properties, and thus is easily sampled using standard (Euclidian metric) Hamiltonian Monte Carlo. Provided that the parameterizations of the conditional distributions specifying the hierarchical model are “constant information parameterizations” (CIPs), the relation between the modified- and original parameterization is bijective, explicitly computed, and admit exploitation of sparsity in the numerical linear algebra involved. CIPs for a large catalogue of statistical models are presented, and from the catalogue, it is clear that many CIPs are currently routinely used in statistical computing. A relation between the proposed methodology and a class of explicitly integrated Riemann manifold Hamiltonian Monte Carlo methods is discussed. The methodology is illustrated on several example models, including a model for inflation rates with multiple levels of nonlinearly dependent latent variables. Supplementary materials for this article are available online.  相似文献   

10.
In this article we propose a modification to the output from Metropolis-within-Gibbs samplers that can lead to substantial reductions in the variance over standard estimates. The idea is simple: at each time step of the algorithm, introduce an extra sample into the estimate that is negatively correlated with the current sample, the rationale being that this provides a two-sample numerical approximation to a Rao–Blackwellized estimate. As the conditional sampling distribution at each step has already been constructed, the generation of the antithetic sample often requires negligible computational effort. Our method is implementable whenever one subvector of the state can be sampled from its full conditional and the corresponding distribution function may be inverted, or the full conditional has a symmetric density. We demonstrate our approach in the context of logistic regression and hierarchical Poisson models. The data and computer code used in this article are available online.  相似文献   

11.
Abstract

The “leapfrog” hybrid Monte Carlo algorithm is a simple and effective MCMC method for fitting Bayesian generalized linear models with canonical link. The algorithm leads to large trajectories over the posterior and a rapidly mixing Markov chain, having superior performance over conventional methods in difficult problems like logistic regression with quasicomplete separation. This method offers a very attractive solution to this common problem, providing a method for identifying datasets that are quasicomplete separated, and for identifying the covariates that are at the root of the problem. The method is also quite successful in fitting generalized linear models in which the link function is extended to include a feedforward neural network. With a large number of hidden units, however, or when the dataset becomes large, the computations required in calculating the gradient in each trajectory can become very demanding. In this case, it is best to mix the algorithm with multivariate random walk Metropolis—Hastings. However, this entails very little additional programming work.  相似文献   

12.
The gamma distribution arises frequently in Bayesian models, but there is not an easy-to-use conjugate prior for the shape parameter of a gamma. This inconvenience is usually dealt with by using either Metropolis–Hastings moves, rejection sampling methods, or numerical integration. However, in models with a large number of shape parameters, these existing methods are slower or more complicated than one would like, making them burdensome in practice. It turns out that the full conditional distribution of the gamma shape parameter is well approximated by a gamma distribution, even for small sample sizes, when the prior on the shape parameter is also a gamma distribution. This article introduces a quick and easy algorithm for finding a gamma distribution that approximates the full conditional distribution of the shape parameter. We empirically demonstrate the speed and accuracy of the approximation across a wide range of conditions. If exactness is required, the approximation can be used as a proposal distribution for Metropolis–Hastings. Supplementary material for this article is available online.  相似文献   

13.
Orthonormal matrices play an important role in reduced-rank matrix approximations and the analysis of matrix-valued data. A matrix Bingham–von Mises–Fisher distribution is a probability distribution on the set of orthonormal matrices that includes linear and quadratic terms in the log-density, and arises as a posterior distribution in latent factor models for multivariate and relational data. This article describes rejection and Gibbs sampling algorithms for sampling from this family of distributions, and illustrates their use in the analysis of a protein–protein interaction network. Supplemental materials, including code and data to generate all of the numerical results in this article, are available online.  相似文献   

14.
Although various efficient and sophisticated Markov chain Monte Carlo sampling methods have been developed during the last decade, the sample mean is still a dominant in computing Bayesian posterior quantities. The sample mean is simple, but may not be efficient. The weighted sample mean is a natural generalization of the sample mean. In this paper, a new weighted sample mean is proposed by partitioning the support of posterior distribution, so that the same weight is assigned to observations that belong to the same subset in the partition. A novel application of this new weighted sample mean in computing ratios of normalizing constants and necessary theory are provided. Illustrative examples are given to demonstrate the methodology.  相似文献   

15.
In this article, we model multivariate categorical (binary and ordinal) response data using a very rich class of scale mixture of multivariate normal (SMMVN) link functions to accommodate heavy tailed distributions. We consider both noninformative as well as informative prior distributions for SMMVN-link models. The notation of informative prior elicitation is based on available similar historical studies. The main objectives of this article are (i) to derive theoretical properties of noninformative and informative priors as well as the resulting posteriors and (ii) to develop an efficient Markov chain Monte Carlo algorithm to sample from the resulting posterior distribution. A real data example from prostate cancer studies is used to illustrate the proposed methodologies.  相似文献   

16.
This article proposes a four-pronged approach to efficient Bayesian estimation and prediction for complex Bayesian hierarchical Gaussian models for spatial and spatiotemporal data. The method involves reparameterizing the covariance structure of the model, reformulating the means structure, marginalizing the joint posterior distribution, and applying a simplex-based slice sampling algorithm. The approach permits fusion of point-source data and areal data measured at different resolutions and accommodates nonspatial correlation and variance heterogeneity as well as spatial and/or temporal correlation. The method produces Markov chain Monte Carlo samplers with low autocorrelation in the output, so that fewer iterations are needed for Bayesian inference than would be the case with other sampling algorithms. Supplemental materials are available online.  相似文献   

17.
Motivated by genetic association studies of pleiotropy, we propose a Bayesian latent variable approach to jointly study multiple outcomes. The models studied here can incorporate both continuous and binary responses, and can account for serial and cluster correlations. We consider Bayesian estimation for the model parameters, and we develop a novel MCMC algorithm that builds upon hierarchical centering and parameter expansion techniques to efficiently sample from the posterior distribution. We evaluate the proposed method via extensive simulations and demonstrate its utility with an application to an association study of various complication outcomes related to Type 1 diabetes. This article has supplementary material online.  相似文献   

18.
This article proposes a new Bayesian approach to prediction on continuous covariates. The Bayesian partition model constructs arbitrarily complex regression and classification surfaces by splitting the covariate space into an unknown number of disjoint regions. Within each region the data are assumed to be exchangeable and come from some simple distribution. Using conjugate priors, the marginal likelihoods of the models can be obtained analytically for any proposed partitioning of the space where the number and location of the regions is assumed unknown a priori. Markov chain Monte Carlo simulation techniques are used to obtain predictive distributions at the design points by averaging across posterior samples of partitions.  相似文献   

19.
Bayesian inference using Markov chain Monte Carlo (MCMC) is computationally prohibitive when the posterior density of interest, π, is computationally expensive to evaluate. We develop a derivative-free algorithm GRIMA to accurately approximate π by interpolation over its high-probability density (HPD) region, which is initially unknown. Our local approach reduces the waste of computational budget on approximation of π in the low-probability region, which is inherent in global experimental designs. However, estimation of the HPD region is nontrivial when derivatives of π are not available or are not informative about the shape of the HPD region. Without relying on derivatives, GRIMA iterates (a) sequential knot selection over the estimated HPD region of π to refine the surrogate posterior and (b) re-estimation of the HPD region using an MCMC sample from the updated surrogate density, which is inexpensive to obtain. GRIMA is applicable to approximation of general unnormalized posterior densities. To determine the range of tractable problem dimensions, we conduct simulation experiments on test densities with linear and nonlinear component-wise dependence, skewness, kurtosis and multimodality. Subsequently, we use GRIMA in a case study to calibrate a computationally intensive nonlinear regression model to real data from the Town Brook watershed. Supplemental materials for this article are available online.  相似文献   

20.
针对一类带有未知非线性函数的严格反馈非线性时滞系统,设计了一种自适应神经网络控制器.选择径向基函数神经网络逼近未知的非线性函数.所提出的控制方案能保证闭环系统的所有信号是全局一致最终有界的.证明了跟踪误差信号将收敛于一个小紧集内.仿真实例验证了所提出方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号