共查询到20条相似文献,搜索用时 0 毫秒
1.
Ramírez EA Cortés E Rubert AA Carro P Benítez G Vela ME Salvarezza RC 《Langmuir : the ACS journal of surfaces and colloids》2012,28(17):6839-6847
The adsorption of 4-mercaptopyridine on Au(111) from aqueous or ethanolic solutions is studied by different surface characterization techniques and density functional theory calculations (DFT) including van der Waals interactions. X-ray photoelectron spectroscopy and electrochemical data indicate that self-assembly from 4-mercaptopyridine-containing aqueous 0.1 M NaOH solutions for short immersion times (few minutes) results in a 4-mercaptopyridine (PyS) self-assembled monolayer (SAM) with surface coverage 0.2. Scanning tunneling microscopy images show an island-covered Au surface. The increase in the immersion time from minutes to hours results in a complete SAM degradation yielding adsorbed sulfur and a heavily pitted Au surface. Adsorbed sulfur is also the main product when the self-assembly process is made in ethanolic solutions irrespective of the immersion time. We demonstrate for the first time that a surface reaction is involved in PyS SAM decomposition in ethanol, a surface process not favored in water. DFT calculations suggest that the surface reaction takes place via disulfide formation driven by the higher stability of the S-Au(111) system. Other reactions that contribute to sulfidization are also detected and discussed. 相似文献
2.
Dong TY Chang LS Tseng IM Huang SJ 《Langmuir : the ACS journal of surfaces and colloids》2004,20(11):4471-4479
The spectroscopic and electrochemical characterizations of electrochemically stable biferrocene-modified Au clusters and chemisorbed biferrocenylalkanethiols on Au(111) surface were studied. The characterizations of biferrocene-modified Au cluster using TEM, UV-vis, and NMR techniques are also reported. Two successive reversible one-electron redox waves were observed for the biferrocenylalkanethiol Au nanoclusters and biferrocenylalkanethiol monolayers on Au(111) surface in the cyclic voltammetry. Furthermore, the positive and negative current peaks for each redox wave occur at almost the same potential, and the peak current increases almost linearly with the sweep rate. Repeat scanning does not change the voltammograms, demonstrating that these monolayers are stable to electrochemical cycling. The coverages of electroactive biferrocene in the monolayers were calculated from the cyclic voltammograms. The standard electron-transfer rate constant was calculated from the splitting between the oxidation and reduction peaks. 相似文献
3.
Self-assembled monolayers (SAMs) of n-butanethiol, n-dodecanethiol and their equimolar mixture on Au(111) were prepared and characterized by ellipsometry, contact angle measurement, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Results revealed that these SAMs are oriented ultrathin films with the thickness of nanometer scale, and the SAMs were influenced by the molecular chain length, the lattice orientation and cleanliness of the substrates. The surface of the longer chain SAM is hydrophobic. The thicknesses of three SAMs of n-butanethiol, n-dodecanethiol and their mixture revealed by ellipsometry and XPS are about 0.59 - 0.67nm, 1.60- 1.69 nm and 1.23 - 1.32nm, respectively. AFM images further demonstrated that the SAM formed by the mixture has some microdomains with two different thicknesses. 相似文献
4.
Canaria CA So J Maloney JR Yu CJ Smith JO Roukes ML Fraser SE Lansford R 《Lab on a chip》2006,6(2):289-295
We report the development of novel reagents and approaches for generating recyclable biosensors. The use of aqueous media for the formation of protein binding alkylthiolate monolayers on Au surfaces results in accelerated alkylthiolate monolayer formation and improvement in monolayer integrity as visualized by fluorescence microscopy and CV techniques. We have also developed an electrocleaning protocol that is compatible with microfluidics devices, and this technique serves as an on-chip method for cleaning Au substrates both before and after monolayer formation. The techniques for the formation and dissociation of biotinylated SAMs from aqueous solvents reported here may be applied towards the development of Au-based sensor devices and microfluidics chips in the future. A potential use of these devices includes the specific capture and triggered release of target cells, proteins, or small molecules from liquid samples. 相似文献
5.
We report a computational investigation of the conformation and the dynamics of self-assembled monolayers (SAMs) of a set of aromatic thiols arranged in the ( radical3 x radical3)-R30 degrees packing ratio on a Au(111) surface using molecular dynamics (MD) simulations. It was found that the molecular conformations were better defined for the arylthiol with two phenyl groups as compared to those with a single phenyl group and that the chemical structure of the head and tail groups had a considerable influence on the system geometry. In line with the density functional theory (DFT) calculations of small thiol molecules, we found for the SAMs that the face-centered cubic (fcc) site on the Au(111) surface was the most preferred, followed by the hexagonal close-packed (hcp) site, while the bridge position showed the characteristics of a local energy maximum. The dynamics of thiol head groups on these three Au sites was found to govern the overall dynamics of SAMs as measured by the mean square displacement. We also report that both the conformation and the dynamics on the studied time scale were driven by the SAM formation energy. 相似文献
6.
Zhou W Baunach T Ivanova V Kolb DM 《Langmuir : the ACS journal of surfaces and colloids》2004,20(11):4590-4595
4,4'-Dithiodipyridine (PySSPy) monolayers on Au(111) were investigated by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and in situ scanning tunneling microscopy (STM). The studies were performed in solutions of different anions and pHs (0.1 M H2SO4, 0.1 M HClO4, 0.1 and 0.01 M Na2SO4, 0.1 and 0.01 M NaOH). The cyclic current-potential curves in H2SO4 show current peaks at about 0.4 V, which are absent for all other electrolytes at this potential. The XPS data suggest that PySSPy adsorbs via the S endgroup on the gold surface and the S-S bond breaks during adsorption. From the chemical shift of the N(ls) peak, it is concluded that in acidic media the self-assembled monolayer (SAM) is fully protonated, whereas in basic solution it is not. The pKa is estimated to be 5.3. STM studies reveal the existence of highly ordered superstructures for the SAM. In Na2SO4 and H2SO4, a (7 x mean square root of 3) structure is proposed. However, whereas in Na2SO4 solutions the superstructure does not change with potential, in 0.1 M H2SO4 the superstructure is observed only negative of the current peak at +0.4 V. At more positive potentials, the film becomes disordered. The results are compared to those for 4-mercaptopyridine (PyS) SAMs. XPS experiments and current-potential curves indicate that both molecules adsorb in the same manner on Au(111), that is, even in the case of PySSPy the adspecies is PyS. The STM results, however, call for a more subtle interpretation. While in Na2SO4 solutions the observed superstructures are the same for both SAMs, markedly different structures are found for PySSPy and PyS SAMs in 0.1 M H2SO4. 相似文献
7.
In-situ scanning tunneling microscopy (STM), cyclic voltammetry (CV), and infrared reflection-adsorption spectroscopy (IRRAS) have been used to examine the electrodeposition of gold onto Pt(111) electrodes modified with benzenethiol (BT) and benzene-1,2-dithiol (BDT) in 0.1 M HClO4 containing 10 microM HAuCl4. Both BT and BDT were attached to Pt(111) via one sulfur headgroup. STM and IRRAS results indicated that the other SH group of BDT was pendant in the electrolyte. Both BT and BDT formed (2 x 2) structures at the coverage of 0.25, and they were transformed into (square root(3) x square root(3))R30 degrees as the coverage was raised to 0.33. These two organic surface modifiers resulted in 3D and 2D gold islands at BT- and BDT-coated Pt(111) electrodes, respectively. The pendant SH group of BDT could interact specifically with gold adspecies to immobilize gold adatoms on the Pt(111) substrate, which yields a 2D growth of gold deposition. Molecular resolution STM revealed an ordered array of (6 x 2 square root(13)) after a full monolayer of gold was plated on the BDT/Pt(111) electrode. Since BDT was strongly adsorbed on Pt(111), gold adatoms only occupied free sites between BDT admolecules on Pt(111). This is supported by a stripping voltammetric analysis, which reveals no reductive desorption of BDT admolecules at a gold-deposited BDT/Pt(111) electrode. It seems that the BDT adlayer acted as the template for gold deposit on Pt(111). In contrast, a BT adlayer yielded 3D gold deposit on Pt(111). This study demonstrates unambiguously that organic surface modifiers could contribute greatly to the electrodeposition of metal adatoms. 相似文献
8.
Hakamada M Takahashi M Furukawa T Tajima K Yoshimura K Chino Y Mabuchi M 《Physical chemistry chemical physics : PCCP》2011,13(26):12277-12284
Desorption of thiolate self-assembled monolayers (SAMs) seriously limits the fabrication of thiol-based devices. Here we demonstrate that nanoporous Au produced by dealloying Au-Ag alloys exhibits high electrochemical stability against thiolate desorption. Nanoporous Au has many defective sites, lattice strain and residual Ag on the ligament surface. First-principles calculations indicate that these surface aspects increase the binding energy between a SAM and the surface of nanoporous Au. 相似文献
9.
Cyganik P Buck M Wilton-Ely JD Wöll C 《The journal of physical chemistry. B》2005,109(21):10902-10908
Self-assembled monolayers of omega-(4'-methylbiphenyl-4-yl) alkane thiols CH3(C6H4)2(CH2)(n)SH (BPn, n = 2, 3, and 5) on Au(111) substrates, prepared at room and elevated temperatures, were studied using scanning tunneling microscopy. In contrast to the biphenyl thiol analogues with n = 0 or 1, ordered domains of large size are formed which exhibit small, periodic height variations on a length scale of several nanometers. These are attributed to solitons (or domain walls), resulting from structural mismatch between the molecular adlayer and the gold substrate. The implications of these results for the design of aromatic thiols to cope with stress and yield low-defect density self-assembled monolayers are discussed. 相似文献
10.
Choi Y Jeong Y Chung H Ito E Hara M Noh J 《Langmuir : the ACS journal of surfaces and colloids》2008,24(1):91-96
Self-assembled monolayers (SAMs) were formed by the spontaneous adsorption of octythiocyanate (OTC) on Au(111) using both solution and ambient-pressure vapor deposition methods at room temperature and 50 degrees C. The surface structures and adsorption characteristics of the OTC SAMs on Au(111) were characterized by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). The STM observation showed that OTC SAMs formed in solution at room temperature have unique surface structures including the formation of ordered and disordered domains, vacancy islands, and structural defects. Moreover, we revealed for the first time that the adsorption of OTC on Au(111) in solution at 50 degrees C led to the formation of SAMs containing small ordered domains, whereas the SAMs formed by vapor deposition at 50 degrees C had long-range ordered domains, which can be described as (radical3 x 2 radical19)R5 degrees structures. XPS measurements of the peaks in the S 2p and N 1s regions for the OTC SAMs showed that vapor deposition is the more effective method as compared to solution deposition for obtaining high-quality SAMs by adsorption of OTC on gold. The results obtained will be very useful in understanding the SAM formation of organic thiocyanates on gold surfaces. 相似文献
11.
Willey TM Vance AL van Buuren T Bostedt C Nelson AJ Terminello LJ Fadley CS 《Langmuir : the ACS journal of surfaces and colloids》2004,20(7):2746-2752
Carboxyl-terminated self-assembled monolayers (SAMs) are commonly used in a variety of applications, with the assumption that the molecules form well-ordered monolayers. In this work, near-edge X-ray absorption fine structure measurements verify that well-ordered monolayers can be formed using acetic acid in the solvent. Disordered monolayers with unbound molecules present in the film result using only ethanol. A stark reorientation occurs upon deprotonation of the end group by rinsing in a KOH solution. This reorientation of the end group is reversible with tilted-over, hydrogen-bound carboxyl groups while the carboxylate ion end groups are upright. C(1s) photoemission shows that SAMs formed and rinsed with acetic acid in ethanol have protonated end groups, while SAMs formed without acetic acid have a large fraction of carboxylate-terminated molecules. 相似文献
12.
Lüssem B Müller-Meskamp L Karthäuser S Waser R Homberger M Simon U 《Langmuir : the ACS journal of surfaces and colloids》2006,22(7):3021-3027
A method is presented for depositing mixed self-assembled monolayers (SAMs) of dodecanethiol (C12) and 4'-methyl-1,1'-biphenyl-4-butane (H3C-C6H4-C6H4-(CH2)4-SH, BP4) by insertion of BP4 into a closely packed SAM of dodecanethiol on Au(111). Insertion takes place at defect sites such as domain boundaries or etch pits in the gold surface that are characteristic of C12 monolayers on gold. With a lower probability, insertion also occurs beside defect sites inside dodecanethiol domains. Insertion at defect sites results in domains of BP4, whereas insertion into C12 domains leads to isolated BP4 molecules. The isolated BP4 molecules are shown not to move at room temperature. By comparing the apparent height of the isolated BP4 molecules and BP4 domains, it is proposed that the isolated molecules have the same conformation as in the full-coverage phase. A simple two-layer model is proposed to characterize the current transport through BP4. The decay constant beta for the phenylene groups is deduced from the apparent STM heights of the inserted BP4 islands compared to the STM heights of the C12 closely packed monolayers. 相似文献
13.
Scanning tunneling microscopy (STM) and high-resolution electron energy loss spectroscopy (HREELS) were used to examine the structural transitions and interface dynamics of octanethiol (OT) self-assembled monolayers (SAMs) caused by long-term storage or annealing at an elevated temperature. We found that the structural transitions of OT SAMs from the c(4 x 2) superlattice to the (6 x square root 3) superlattice resulting from long-term storage were caused by both the dynamic movement of the adsorbed sulfur atoms on several adsorption sites of the Au(111) surface and the change of molecular orientation in the ordered layer. Moreover, it was found that the chemical structure of the sulfur headgroups does not change from monomer to dimer by the temporal change of SAMs at room temperature. Contrary to the results of the long-term-stored SAMs, it was found that the annealing process did not modify either the interfacial or chemical structures of the sulfur headgroups or the two-dimensional c(4 x 2) domain structure. Our results will be very useful for a better understanding of the interface dynamics and stability of sulfur atoms in alkanethiol SAMs on Au(111) surfaces. 相似文献
14.
Benítez G Vericat C Tanco S Remes Lenicov F Castez MF Vela ME Salvarezza RC 《Langmuir : the ACS journal of surfaces and colloids》2004,20(12):5030-5037
A comparative study of charge-transfer processes from/to methyl-terminated and carboxylate-terminated thiolate-covered Au(111) surfaces to/from immobilized methylene blue (MB) molecules is presented. Scanning tunneling microscopy images with molecular resolution reveal the presence of molecular-sized defects, missing rows, and crystalline domains with different tilts that turn the thickness of the alkanethiolate SAM (the spacer) uncertain. The degree of surface heterogeneity at the SAMs increases as the number of C units (n) in the hydrocarbon chain decreases from n = 6. Defective regions act as preferred paths for MB incorporation into the methyl-terminated SAMs, driven by hydrophobic forces. The presence of negative-charged terminal groups at the SAMs reduces the number of molecules that can be incorporated, immobilizing them at the outer plane of the monolayer. Only MB molecules incorporated into the SAMs close to the Au(111) surface (at a distance < 0.5 nm) are electrochemically active. MB molecules trapped in different defects explain the broad shape and humps observed in the voltammogram of the redox couple. The heterogeneous charge-transfer rate constants for MB immobilized into methyl-terminated thiolate SAMs are higher than those estimated for carboxylate- terminated SAMs, suggesting a different orientation of the immobilized molecule in the thiolate environment. 相似文献
15.
Although the adsorption of benzenethiols (BT) on Au(111) usually leads to the formation of disordered phases, we demonstrate here that the displacement of preadsorbed cyclohexanethiol self-assembled monolayers (SAMs) on Au(111) by BT molecules can be a successful approach to obtain two-dimensional BT SAMs with long-range ordered domains. 相似文献
16.
Vemparala S Karki BB Kalia RK Nakano A Vashishta P 《The Journal of chemical physics》2004,121(9):4323-4330
Large-scale molecular dynamics simulations of self-assembled alkanethiol monolayer systems have been carried out using an all-atom model involving a million atoms to investigate their structural properties as a function of temperature, lattice spacing, and molecular chain length. Our simulations show that the alkanethiol chains of 13-carbons tilt from the surface normal by a collective angle of 25 degrees along next-nearest-neighbor direction at 300 K. The tilt structure of 13-carbon alkanethiol system is found to depend strongly on temperature and exhibits hysteresis. At 350 K the 13-carbon alkanethiol system transforms to a disordered phase characterized by small collective tilt angle, flexible tilt direction, and random distribution of backbone planes. The tilt structure also depends on lattice spacing: With increasing lattice spacing a the tilt angle increases rapidly from a nearly zero value at a=4.7 A to as high as 34 degrees at a=5.3 A at 300 K for 13-carbon alkanethiol system. Finally, the effects of the molecular chain length on the tilt structure are significant at high temperatures. 相似文献
17.
Dielectric relaxation spectroscopy is used to quantify molecular motion in alkylsilane SAMs coated on porous glass over a broad temperature range, -30 to -150 degrees C. Systematic measurements using SAMs with variable coating densities allow us to determine the effect of monolayer disorder on molecular mobility in thin molecular films. A relaxation process with an activation energy of approximately 25 kJ/mol is found to dominate dynamics of SAM-chain segments near the substrate. By introducing polar CN groups at the ends of the chain, we show that the relaxation process in the monolayer canopy can be isolated and studied. This approach can be generalized to other substituent polar groups to probe localized relaxation dynamics in surface-grafted monolayer films. 相似文献
18.
We present an STM study of self-assembled monolayers of 2,3,6,7,10,11-undecalkoxy-substituted triphenylene (T11) at the n-tetradecane/Au(111) interface under ambient conditions. T11 molecules self-organize as paired rows with molecules lying flat on the surface in an antiparallel position. Three alkyl chains of each T11 molecule align along the 110 direction of the underlying Au(111) substrate. The association of T11 in molecular pairs appears to result from a substrate-induced mechanism governed by the strong anisotropic interaction between T11 alkyl chains and Au(111). 相似文献
19.
Terzi F Seeber R Pigani L Zanardi C Pasquali L Nannarone S Fabrizio M Daolio S 《The journal of physical chemistry. B》2005,109(41):19397-19402
In this article the adsorption of 3-methylthiophene on planar and nanoparticle Au surfaces is investigated. The resulting systems are compared with a benchmark system based on 1-decanethiol. The characterization data collected evidence the formation of a packed 3-methylthiophene SAM on the planar surface. In particular, spectroscopic investigations suggest that 3-methylthiophene aromatic system is not adsorbed on the surface through the pi-electron system but rather through the S atom alone. On the other hand, the behavior of 3-methylthiophene on nanoparticle surfaces is notably different from that of the alkanethiol. Only a limited fraction of the surface of Au nanoparticles results to be actually coated after purification; this notwithstanding, the nanoparticle growth seems to be strongly influenced by the presence of such a labile encapsulating agent. 相似文献
20.
Jang SS Jang YH Kim YH Goddard Iii WA Flood AH Laursen BW Tseng HR Stoddart JF Jeppesen JO Choi JW Steuerman DW Deionno E Heath JR 《Journal of the American Chemical Society》2005,127(5):1563-1575
Bistable [2]rotaxanes display controllable switching properties in solution, on surfaces, and in devices. These phenomena are based on the electrochemically and electrically driven mechanical shuttling motion of the ring-shaped component, cyclobis(paraquat-p-phenylene) (CBPQT(4+)) (denoted as the ring), between a tetrathiafulvalene (TTF) unit and a 1,5-dioxynaphthalene (DNP) ring system located along a dumbbell component. When the ring is encircling the TTF unit, this co-conformation of the rotaxane is the most stable and thus designated the ground-state co-conformer (GSCC), whereas the other co-conformation with the ring surrounding the DNP ring system is less favored and so designated the metastable-state co-conformer (MSCC). We report here the structure and properties of self-assembled monolayers (SAMs) of a bistable [2]rotaxane on Au (111) surfaces as a function of surface coverage based on atomistic molecular dynamics (MD) studies with a force field optimized from DFT calculations and we report several experiments that validate the predictions. On the basis of both the total energy per rotaxane and the calculated stress that is parallel to the surface, we find that the optimal packing density of the SAM corresponds to a surface coverage of 115 A(2)/molecule (one molecule per 4 x 4 grid of surface Au atoms) for both the GSCC and MSCC, and that the former is more stable than the latter by 14 kcal/mol at the optimum packing density. We find that the SAM retains hexagonal packing, except for the case at twice the optimum packing density (65 A(2)/molecule, the 3 x 3 grid). For the GSCC and MSCC, investigated at the optimum coverage, the tilt of the ring with respect to the normal is theta = 39 degrees and 61 degrees, respectively, while the tilt angle of the entire rotaxane is psi = 41 degrees and 46 degrees , respectively. Although the tilt angle of the ring decreases with decreasing surface coverage, the tilt angle of the rotaxane has a maximum at 144 A(2)/molecule (the 4 x 5 grid/molecule) of 50 degrees and 51 degrees for the GSCC and MSCC, respectively. The hexafluorophosphate counterions (PF(6)(-)) stay localized around the ring during the 2 ns MD simulation. On the basis of the calculated density profile, we find that the thickness of the SAM is 40.5 A at the optimum coverage for the GSCC and 40.0 A for MSCC, and that the thicknesses become less with decreasing surface coverage. The calculated surface tension at the optimal packing density is 45 and 65 dyn/cm for the GSCC and MSCC, respectively. This difference suggests that the water contact angle for the GSCC is larger than for the MSCC, a prediction that is verified by experiments on Langmuir-Blodgett monolayers of amphiphilic [2]rotaxanes. 相似文献