首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
Na[cyclo-(P(5)tBu(4))] (1) reacts with [NiCl(2)(PEt(3))(2)] and [PdCl(2)(PMe(2)Ph)(2)] with elimination of tBuCl and formation of the corresponding metal(0) cyclopentaphosphene complexes [Ni{cyclo-(P(5)tBu(3))}(PEt(3))(2)] (2) and [Pd{cyclo-(P(5)tBu(3))}(PMe(2)Ph)(2)] (3). In contrast, complexes with the more labile triphenylphosphane ligand, such as [MCl(2)(PPh(3))(2)] (M=Ni, Pd), react with 1 with formation of [NiCl{cyclo-(P(5)tBu(4))}(PPh(3))] (4) and [Pd{cyclo-(P(5)tBu(4))}(2)] (5), respectively, in which the cyclo-(P(5)tBu(4)) ligand is intact. In the case of palladium, the cyclopentaphosphene complex [Pd{cyclo-(P(5)tBu(3))}(PPh(3))(2)] (6) in trace amounts is also formed. However, [Ni{cyclo-(P(5)tBu(4))}(2)] (7) is easily obtained by reaction of two equivalents of 1 and one equivalent of [NiCl(2)(bipy)] at room temperature. Complex 7 rearranges on heating in n-hexane or toluene to the previously unknown [Ni{cyclo-(P(5)tBu(4))PtBu}{cyclo-(P(4)tBu(3))}] (8), which presumably is formed via the intermediate [Ni{cyclo-(P(5)tBu(4))}{cyclo-(P(4)tBu(3))PtBu}], which, after an unexpected and unprecedented phosphanediide migration, gives 8, but always as an inseparable mixture with 7. In the reaction of 1 with [PtCl(2)(PPh(3))(2)], ring contraction and formation of [PtCl{cyclo-(P(4)tBu(3))PtBu}(PMe(2)Ph)] (9) is observed. Complexes 3-5 and 7-9 were characterised by (31)P NMR spectroscopy, and X-ray structures were obtained for 5-9.  相似文献   

2.
The hexaphosphapentaprismane P(6)C(4)(t)Bu(4) undergoes specific insertion of the zerovalent platinum fragment [Pt(PPh(3))(2)] into the unique P-P bond between the 5-membered rings to afford [Pt(PPh(3))(2)P(6)C(4)(t)Bu(4)]. A similar reaction with the Pt(ii) complexes [{PtCl(2)(PMe(3))}(2)] and [PtCl(2)(eta(4)-COD)] results in both insertion and chlorine migration reactions. The complexes [Pt(PPh(3))(2)P(6)C(4)(t)Bu(4)], trans-[PtCl(PMe(3))P(6)C(4)(t)Bu(4)Cl], cis-,trans-[{PtCl(2)(PMe(3))}micro-{P(6)C(4)(t)Bu(4)}{PtCl(2)(PMe(3))}], [{PtClP(6)C(4)(t)Bu(4)Cl}(2)] and cis-[PtClP(6)C(4)(t)Bu(4)Cl(P(6)C(4)(t)Bu(4))] have been structurally characterized by single crystal X-ray diffraction and multinuclear NMR studies.  相似文献   

3.
[Na{cyclo-(P(5)tBu(4))}] (1) reacts with [CuCl(PCyp(3))(2)] (Cyp=cyclo-C(5)H(9)) and [CuCl(PPh(3))(3)] (1:1) to give the corresponding copper(I) complexes with a tetra-tert-butylcyclopentaphosphanide ligand, [Cu{cyclo- (P(5)tBu(4))}(PCyp(3))(2)] (2) and [Cu{cyclo-(P(5)tBu(4))}(PPh(3))(2)] (3). The CuCl adduct of 2, [Cu(2)(mu-Cl){cyclo-(P(5)tBu(4))}(PCyp(3))(2)] (4), was obtained from the reaction of 1 with [CuCl(PCyp(3))(2)] (1:2). Compounds 2 and 3 rearrange, even at -27 degrees C, to give [Cu(4){cyclo- (P(4)tBu(3))PtBu}(4)] (5), in which ring contraction of the [cyclo-(P(5)tBu(4))](-) anion has occurred. The reaction of 1 with [AgCl(PCyp(3))](4) or [AgCl(PPh(3))(2)] (1:1) leads to the formation of [Ag(4){cyclo-(P(4)tBu(3))PtBu}(4)] (6). Intermediates, which are most probably mononuclear, "[Ag{cyclo-(P(5)tBu(4))}(PR(3))(2)]" (R=Cyp, Ph) could be detected in the reaction mixtures, but not isolated. Finally, the reaction of 1 with [AuCl(PCyp(3))] (1:1) yielded [Au{cyclo-(P(5)tBu(4))}(PCyp(3))] (7), whereas an inseparable mixture of [Au(3){cyclo-(P(5)tBu(4))}(3)] (8) and [Au(4){cyclo-(P(4)tBu(3))PtBu}(4)] (9) was obtained from the analogous reaction with [AuCl(PPh(3))]. Complexes 3-7 were characterised by (31)P NMR spectroscopy, and X-ray crystal structures were determined for 3-9.  相似文献   

4.
The reagent Li(2)[7-NMe(3)-nido-7-CB(10)H(10)] reacts with [Mo(CO)(3)(NCMe)(3)] in THF-NCMe (THF = tetrahydrofuran) to give a molybdenacarborane intermediate which, upon oxidation by CH(2)[double bond]CHCH(2)Br or I(2) and then addition of [N(PPh(3))(2)]Cl, gives the salts [N(PPh(3))(2)][2,2,2-(CO)(3)-2-X-3-NMe(3)-closo-2,1-MoCB(10)H(10)] (X = Br (1) or I (2)). During the reaction, the cage-bound NMe(3) substituent is transferred from the cage-carbon atom to an adjacent cage-boron atom, a feature established spectroscopically in 1 and 2, and by X-ray diffraction studies on several of their derivatives. When [Rh(NCMe)(3)(eta(5)-C(5)Me(5))][BF(4)](2) is used as the oxidizing agent, the trimetallic compound [2,2,2-(CO)(3)-7-mu-H-2,7,11-[Rh(2)(mu-CO)(eta(5)-C(5)Me(5))(2)]-closo-2,1-MoCB(10)H(9)] (10) is formed, the NMe(3) group being lost. Reaction of 1 in CH(2)Cl(2) with Tl[PF(6)] in the presence of donor ligands L affords neutral zwitterionic compounds [2,2,2-(CO)(3)-2-L-3-NMe(3)-closo-2,1-MoCB(10)H(10)] for L = PPh(3) (4) or CNBu(t) (5), and [2-Bu(t)C[triple bond]CH-2,2-(CO)(2)-3-NMe(3)-closo-2,1-MoCB(10)H(10)] (6) when L = Bu(t)C[triple bond]CH. When 1 is treated with CNBu(t) and X(2), the metal center is oxidized, and in the products obtained, [2,2,2,2-(CNBu(t))(4)-2-Br-3-X-closo-2,1-MoCB(10)H(10)] (X = Br (7), I (8)), the B-NMe(3) bond is replaced by B-X. In contrast, treatment of 2 with I(2) and cyclo-1,4-S(2)(CH(2))(4) in CH(2)Cl(2) results in oxidative substitution of the cluster and retention of the NMe(3) group, giving [2,2,2-(CO)(3)-2-I-3-NMe(3)-6-[cyclo-1,4-S(2)(CH(2))(4)]-closo-2,1-MoCB(10)H(9)] (9). The unique structural features of the new compounds were confirmed by single-crystal X-ray diffraction studies upon 6, 7, 9 and 10.  相似文献   

5.
The reaction of dimethyldiaryltin reagents Me(2)SnR(2) (R = Ph (1), p-MePh (2), m,m-Me(2)Ph (3), p-(t)BuPh (4), p-MeOPh (5), p-CF(3)Ph (6)) with BCl(3) provided a high-yielding, simple preparative route to the corresponding diarylchloroboranes R(2)BCl (R = Ph (10), p-MePh (11), m,m-Me(2)Ph (12), p-(t)BuPh (13), p-MeOPh (14), p-CF(3)Ph (15)). In some cases, the desired diarylchloroborane was not formed from an appropriate tin reagent Me(2)SnR(2) (R = o-MeOPh (7), o,o-(MeO)(2)Ph (8), o-CF(3)Ph (9)). The reaction of lithiated methyldiaryl- or methyldialkylphosphines with diarylchloroboranes or dialkylchloroboranes is discussed. Specifically, several new monoanionic bis(phosphino)borates are detailed: [Ph(2)B(CH(2)PPh(2))(2)] (25); [(p-MePh)(2)B(CH(2)PPh(2))(2)] (26); [(p-(t)BuPh)(2)B(CH(2)PPh(2))(2)] (27); [(p-MeOPh)(2)B(CH(2)PPh(2))(2)] (28); [(p-CF(3)Ph)(2)B(CH(2)PPh(2))(2)] (29); [Cy(2)B(CH(2)PPh(2))(2)] (30); [Ph(2)B(CH(2)P[p-(t)BuPh](2))(2)] (31); [(p-MeOPh)(2)B(CH(2)P[p-(t)BuPh](2))(2)] (32); [Ph(2)B(CH(2)P[p-CF(3)Ph](2))(2)] (33); [Ph(2)B(CH(2)P(BH(3))(Me)(2))(2)] (34); [Ph(2)B(CH(2)P(S)(Me)(2))(2)] (35); [Ph(2)B(CH(2)P(i)Pr(2))(2)] (36); [Ph(2)B(CH(2)P(t)Bu(2))(2)] (37); [(m,m-Me(2)Ph)(2)B(CH(2)P(t)Bu(2))(2)] (38). The chelation of diarylphosphine derivatives 25-33 and 36 to platinum was examined by generation of a series of platinum dimethyl complexes. The electronic effects of substituted bis(phosphino)borates on the carbonyl stretching frequency of neutral platinum alkyl carbonyl complexes were studied by infrared spectroscopy. Substituents remote from the metal center (i.e. on boron) have minimal effect on the electronic nature of the metal center, whereas substitution close to the metal center (on phosphorus) has a greater effect on the electronic nature of the metal center.  相似文献   

6.
Titanium-phosphorus frustrated Lewis pairs (FLPs) based on titanocene-phosphinoaryloxide complexes have been synthesised. The cationic titanium(IV) complex [Cp(2)TiOC(6)H(4)P((t)Bu)(2)][B(C(6)F(5))(4)] 2 reacts with hydrogen to yield the reduced titanium(III) complex [Cp(2)TiOC(6)H(4)PH((t)Bu)(2)][B(C(6)F(5))(4)] 5. The titanium(III)-phosphorus FLP [Cp(2)TiOC(6)H(4)P((t)Bu)(2)] 6 has been synthesised either by chemical reduction of [Cp(2)Ti(Cl)OC(6)H(4)P((t)Bu)(2)] 1 with [CoCp*(2)] or by reaction of [Cp(2)Ti{N(SiMe(3))(2)}] with 2-C(6)H(4)(OH){P((t)Bu)(2)}. Both 2 and 6 catalyse the dehydrogenation of Me(2)HN·BH(3).  相似文献   

7.
The octahedral Ru(II) amine complexes [TpRu(L)(L')(NH(2)R)][OTf] (L = L' = PMe(3), P(OMe)(3) or L = CO and L' = PPh(3); R = H or (t)Bu) have been synthesized and characterized. Deprotonation of the amine complexes [TpRu(L)(L')(NH(3))][OTf] or [TpRu(PMe(3))(2)(NH(2)(t)Bu)][OTf] yields the Ru(II) amido complexes TpRu(L)(L')(NH(2)) and TpRu(PMe(3))(2)(NH(t)Bu). Reactions of the parent amido complexes or TpRu(PMe(3))(2)(NH(t)Bu) with phenylacetylene at room temperature result in immediate deprotonation to form ruthenium-amine/phenylacetylide ion pairs, and heating a benzene solution of the [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] ion pair results in the formation of the Ru(II) phenylacetylide complex TpRu(PMe(3))(2)(C[triple bond]CPh) in >90% yield. The observation that [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] converts to the Ru(II) acetylide with good yield while heating the ion pairs [TpRu(L)(L')(NH(3))][PhC(2)] yields multiple products is attributed to reluctant dissociation of ammonia compared with the (t)butylamine ligand (i.e., different rates for acetylide/amine exchange). These results are consistent with ligand exchange reactions of Ru(II) amine complexes [TpRu(PMe(3))(2)(NH(2)R)][OTf] (R = H or (t)Bu) with acetonitrile. The previously reported phenyl amido complexes TpRuL(2)(NHPh) [L = PMe(3) or P(OMe)(3)] react with 10 equiv of phenylacetylene at elevated temperature to produce Ru(II) acetylide complexes TpRuL(2)(C[triple bond]CPh) in quantitative yields. Kinetic studies indicate that the reaction of TpRu(PMe(3))(2)(NHPh) with phenylacetylene occurs via a pathway that involves TpRu(PMe(3))(2)(OTf) or [TpRu(PMe(3))(2)(NH(2)Ph)][OTf] as catalyst. Reactions of 1,4-cyclohexadiene with the Ru(II) amido complexes TpRu(L)(L')(NH(2)) (L = L' = PMe(3) or L = CO and L' = PPh(3)) or TpRu(PMe(3))(2)(NH(t)Bu) at elevated temperatures result in the formation of benzene and Ru hydride complexes. TpRu(PMe(3))(2)(H), [Tp(PMe(3))(2)Ru[double bond]C[double bond]C(H)Ph][OTf], [Tp(PMe(3))(2)Ru=C(CH(2)Ph)[N(H)Ph]][OTf], and [TpRu(PMe(3))(3)][OTf] have been independently prepared and characterized. Results from solid-state X-ray diffraction studies of the complexes [TpRu(CO)(PPh(3))(NH(3))][OTf], [TpRu(PMe(3))(2)(NH(3))][OTf], and TpRu(CO)(PPh(3))(C[triple bond]CPh) are reported.  相似文献   

8.
A series of mononuclear platinum complexes containing diynyldiphenylphosphine ligands [cis-Pt(C(6)F(5))(2)(PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)L](n)(n= 0, L = tht, R = Ph 2a, Bu(t)2b; L = PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR, 4a, 4b; n=-1, L = CN(-), 3a, 3b) has been synthesized and the X-ray crystal structures of 4a and 4b have been determined. In order to compare the eta2-bonding capability of the inner and outer alkyne units, the reactivity of towards [cis-Pt(C(6)F(5))(2)(thf)(2)] or [Pt(eta2)-C(2)H(4))(PPh(3))(2)] has been examined. Complexes coordinate the fragment "cis-Pt(C(6)F(5))(2)" using the inner alkynyl fragment and the sulfur of the tht ligand giving rise the binuclear derivatives [(C(6)F(5))(2)Pt(mu-tht)(mu-1kappaP:2eta2-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CR)Pt(C(6)F(5))(2)](R = Ph 5a, Bu(t)5b). The phenyldiynylphosphine complexes 2a, 3a and 4a react with [Pt(eta2)-C(2)H(4))(PPh(3))(2)] to give the mixed-valence Pt(II)-Pt(0) complexes [((C(6)F(5))(2)LPt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)](n)(L = tht 6a, CN 8a and PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh 9a) in which the Pt(0) fragment is eta2-complexed by the outer fragment. Complex 6a isomerizes in solution to a final complex [((C(6)F(5))(2)(tht)Pt(mu-1kappaP:2eta2)-C(alpha),C(beta)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh))Pt(PPh(3))(2)]7a having the Pt(0) fragment coordinated to the inner alkyne function. In contrast, the tert-butyldiynylphosphine complexes 2b and 3b coordinate the Pt(0) unit through the phosphorus substituted inner acetylenic entity yielding 7b and 8b. By using 4a and 2 equiv. of [Pt(eta2)-C(2)H(4))(PPh(3))(2)] as precursors, the synthesis of the trinuclear complex [cis-((C(6)F(5))(2)Pt(mu-1kappaP:2eta2)-C(5),C(6)-PPh(2)C[triple bond]CC(6)H(4)C[triple bond]CPh)(2))(Pt(PPh(3))(2))(2)]10a, bearing two Pt(0)(PPh(3))(2)eta2)-coordinated to the outer alkyne functions is achieved. The structure of 7a has been confirmed by single-crystal X-ray diffraction.  相似文献   

9.
[PPh(4)][EI(4)] (E=As, Sb, Bi) salts were reacted with four and five equivalents of AgN(3) to form tetraazidopnictates and pentaazidopnictates of the type [PPh(4)][E(N(3))(4)] and [PPh(4)](2)[E(N(3))(5)], respectively. The synthesis of [PPh(4)][P(N(3))(4)] was also attempted from the reaction of P(N(3))(3) with [PPh(4)]N(3), but it yielded only the starting materials. Herein, we report the synthesis and structure elucidation of [PPh(4)][E(N(3))](4) (E=As, Sb) and pentaazidobismuthate, stabilized as the dimethyl sulfoxide (DMSO) anion adduct, [PPh(4)](2)[Bi(N(3))(5)(dmso)]. Successive anion formation along the series E(N(3))(3)+nN(3)(-) (n=1-3) and E(N(3))(5)+N(3)(-) was studied by density functional theory.  相似文献   

10.
The coordination abilities of the novel N,N'-diphosphino-silanediamine ligand of formula SiMe(2)(NtolPPh(2))(2) (SiNP, 1) have been investigated toward rhodium, and the derivatives [RhCl(SiNP)](2) (2), [Rh(SiNP)(COD)][BF(4)] (3), and Rh(acac)(SiNP) (4) have been synthesized. The stability of the dinuclear frame of [RhCl(SiNP)](2) (2) toward incoming nucleophiles has been shown to be dependent on their π-acceptor ability. Indeed, the mononuclear complexes RhCl(SiNP)(L) (L = CO, 5; CN(t)Bu, 6) have been isolated purely and quantitatively upon reaction of 2 with CO and CN(t)Bu, respectively. Otherwise, PPh(3) and RhCl(SiNP) equilibrate with Rh(Cl)(SiNP)(PPh(3)) (7). Carbon electrophiles such as MeI and 3-chloro-1-proprene afforded the oxidation of rhodium(I) to rhodium(III) and the formation of RhCl(2)(η(3)-C(3)H(5))(SiNP) (8) and Rh(Me)(I)(SiNP)(acac) (10), respectively. The methyl derivative 10 is thermally stable and does not react either with CO or with CN(t)Bu even in excess. Otherwise, RhCl(2)(η(3)-C(3)H(5))(SiNP) (8) is thermally stable but reacts with CO, affording 3-chloro-1-proprene and RhCl(SiNP)(CO) (5). Finally, upon reaction of Rh(acac)(SiNP) (4) and 3-chloro-1-proprene, RhCl(acac)(η(1)-C(3)H(5))(SiNP) (9a) and [Rh(acac)(η(3)-C(3)H(5))(SiNP)]Cl (9b) could be detected at 233 K. At higher temperatures, 9a and 9b smoothly decompose, affording the dinuclear derivative [RhCl(SiNP)](2) (2) and the CC coupling product 3-allylpentane-2,4-dione.  相似文献   

11.
The complexes trans-RuH(Cl)(tmen)(R-binap) (1) and (OC-6-43)-RuH(Cl)(tmen)(PPh(3))(2) (2) are prepared by the reaction of the diamine NH(2)CMe(2)CMe(2)NH(2) (tmen) with RuH(Cl)(PPh(3))(R-binap) and RuH(Cl)(PPh(3))(3), respectively. Reaction of KHB(sec)Bu(3) with 1 yields trans-Ru(H)(2)(R-binap)(tmen) (5) while reaction of KHB(sec)Bu(3) or KO(t)Bu with 2 under Ar yields the new hydridoamido complex RuH(PPh(3))(2)(NH(2)CMe(2)CMe(2)NH) (4). Complex 4 has a distorted trigonal bipyramidal geometry with the amido nitrogen in the equatorial plane. Loss of H(2) from 5 results in the related complex RuH(R-binap)(NH(2)CMe(2)CMe(2)NH) (3). Reaction of H(2) with 4 yields the trans-dihydride (OC-6-22)-Ru(H)(2)(PPh(3))(2)(tmen)(6). Calculations support the assignment of the structures. The hydrogenation of acetophenone is catalyzed by 5 or 4 in benzene or 2-propanol without the need for added base. For 5 in benzene at 293 K over the ranges of concentrations [5] = 10(-)(4) to 10(-)(3) M, [ketone] = 0.1 to 0.5 M, and of pressures of H(2) = 8 to 23 atm, the rate law is rate = k[5][H(2)] with k = 3.3 M(-1) s(1), DeltaH++ = 8.5 +/- 0.5 kcal mol(-1), DeltaS++ = -28 +/- 2 cal mol(-1) K(-1). For 4 in benzene at 293 K over the ranges of concentrations [4] = 10(-4) to 10(-3) M, [ketone] 0.1 to 0.7 M, and of pressures of H(2) = 1 to 6 atm, the preliminary rate law is rate = k[4][H(2)] with k = 1.1 x 10(2) M(-1) s(-1), DeltaH++ = 7.6 +/- 0.3 kcal mol(-1), DeltaS++ = -23 +/- 1 cal mol(-1) K(-1). Both theory and experiment suggest that the intramolecular heterolytic splitting of dihydrogen across the polar Ru=N bond of the amido complexes 3 and 4 is the turn-over limiting step. A transition state structure and reaction energy profile is calculated. The transfer of H(delta+)/H(delta-) to the ketone from the RuH and NH groups of 5 in a Noyori metal-ligand bifunctional mechanism is a fast process and it sets the chirality as (R)-1-phenylethanol (62-68% ee) in the hydrogenation of acetophenone. The rate of hydrogenation of acetophenone catalyzed by 5 is slower and the ee of the product is low (14% S) when 2-propanol is used as the solvent, but both the rate and ee (up to 55% R) increase when excess KO(t)Bu is added. The formation of ruthenium alkoxide complexes in 2-propanol might explain these observations. Alkoxide complexes [RuP(2)]H(OR)(tmen), [RuP(2)] = Ru(R-binap) or Ru(PPh(3))(2), R= (i) Pr, CHPhMe, (t)Bu, are observed by reacting the alcohols (i)PrOH, phenylethanol, and (t)BuOH with the dihydrides 5 and 6, respectively, under Ar. In the absence of H(2), the amido complexes 3 and 4 react with acetophenone to give the ketone adducts [RuP(2)]H(O=CPhMe)(NH(2)CMe(2)CMe(2)NH) in equilibrium with the enolate complexes trans- [RuP(2)](H)(OCPh=CH(2))(tmen) and eventually the decomposition products [RuP(2)]H(eta(5)-CH(2)CPhCHCPhO), with the binap complex characterized crystallographically. In general, proton transfer from the weakly acidic molecules dihydrogen, alcohol, or acetophenone to the amido nitrogen of complexes 3 and 4 is favored in two ways when the molecule coordinates to ruthenium: (1) an increase in acidity of the molecule by the Lewis acidic metal and (2) an increase in the basicity of the amido nitrogen caused by its pyramidalization. The formato complexes trans-[RuP(2)]H(OCHO)(tmen) were prepared by reacting the respective complex 4 or 5 with formic acid. The crystal structure of RuH(OCHO)(PPh(3))(2)(tmen) displays similar features to the calculated transition state for H(delta+)/H(delta-) transfer to the ketone in the catalytic cycle.  相似文献   

12.
Reaction of RuHCl(PPh(3))(2)(diamine) (1a, diamine = (R,R)-1,2-diaminocyclohexane, (R,R)-dach; 1b, diamine = ethylenediamine, en) with KO(t)Bu in benzene quickly generates solutions of the amido-amine complexes RuH(PPh(3))(2)(NHC(6)H(10)NH(2)), (2a'), and RuH(PPh(3))(2)(NHCH(2)CH(2)NH(2)), (2b'), respectively. These solutions react with dihydrogen to first produce the trans-dihydrides (OC-6-22)-Ru(H)(2)(PPh(3))(2)(diamine) (t,c-3a, t,c-3b). Cold solutions (-20 degrees C) containing trans-dihydride t,c-3a react with acetophenone under Ar to give (S)-1-phenylethanol (63% ee). Complexes t,c-3 have lifetimes of less than 10 min at 20 degrees and then isomerize to the cis-dihydride, cis-bisphosphine isomers (OC-6-32)-Ru(H)(2)(PPh(3))(2)(diamine) (Delta/Lambda-c,c-3a, c,c-3b). A solution containing mainly Delta/Lambda-c,c-3a reacts with acetophenone under Ar to give (S)-1-phenylethanol in 20% ee, whereas it is an active precatalyst for its hydrogenation under 5 atm H(2) to give 1-phenylethanol with an ee of 50-60%. Complexes c,c-3 isomerize to the cis-dihydride, trans-bisphosphine complexes (OC-6-13)-Ru(H)(2)(PPh(3))(2)(diamine) (c,t-3a, c,t-3b) with half-lives of 40 min and 1 h, respectively. A mixture of Delta/Lambda-c,c-3a and c,t-3a can also be obtained by reaction of 1a with KBH(Bu(sec))(3). A solution of complex c,t-3a in benzene under Ar reacts very slowly with acetophenone. These results indicate that the trans-dihydrides t,c-3a or t,c-3b along with the corresponding amido-amine complexes 2a' or 2b' are the active hydrogenation catalysts in benzene, while the cis-dihydrides c,c-3a or c,c-3b serve as precatalysts. The complexes RuCl(2)(PPh(3))(2)((R,R)-dach) or 1a, when activated by KO(t)Bu, are also sources of the active catalysts. A study of the kinetics of the hydrogenation of acetophenone in benzene catalyzed by 3a indicates a rate law: rate = k[c,c-3a](initial)[H(2)] with k = 7.5 M(-1) s(-1). The turnover-limiting step appears to be the reaction of 2a' with dihydrogen as it is for RuH(NHCMe(2)CMe(2)NH(2))(PPh(3))(2) (2c'). The catalysts are more active in 2-propanol, even without added base, and the kinetic behavior is complicated. The basic cis-dihydride c,t-3a reacts with [NEt(3)H]BPh(4) to produce the dihydrogen complex (OC-14)-[Ru(eta(2)-H(2))(H)(PPh(3))(2)((R,R)-dach)]BPh(4) (4) and with diphenylphosphinic acid to give the complex RuH(O(2)PPh(2))(PPh(3))(2)((R,R)-dach) (5). The structure of 5 models aspects of the transition state structure for the ketone hydrogenation step. Complex 2b' decomposes rapidly under Ar to give dihydrides 3b along with a dinuclear complex (PPh(3))(2)HRu(mu-eta(2);eta(4)-NHCHCHNH)RuH(PPh(3))(2) (6) containing a rare, bridging 1,4-diazabutadiene group. The formation of an imine by beta-hydride elimination from the amido-amine ligand of 2a' under Ar might explain some loss of enantioselectivity of the catalyst. The structures of complexes 1a, 5, and 6 have been determined by single-crystal X-ray diffraction.  相似文献   

13.
Copper(I) complexes of the tridentate thioether ligands [PhB(CH(2)SCH(3))(3)] (abbreviated PhTt), [PhB(CH(2)SPh)(3)] (PhTt(Ph)), [PhB(CH(2)S(t)()Bu)(3)] (PhTt(t)()(Bu)), and [PhB(CH(2)S(p)()Tol)(3)] (PhTt(p)()(Tol)) and bidentate thioether ligands [Ph(2)B(CH(2)SCH(3))(2)] (Ph(2)Bt), [Et(2)B(CH(2)SCH(3))(2)] (Et(2)Bt), and [Ph(2)B(CH(2)SPh)(2)] (Ph(2)Bt(Ph)) have been prepared and characterized. The solution and solid state structures are highly sensitive to the identity of the borato ligand employed. Ligands possessing the smaller (methylthio)methyl donors, [PhTt] and [Ph(2)Bt], yielded tetrameric species, [(PhTt)Cu](4) and [(Ph(2)Bt)Cu](4), containing both terminal and bridging thioether ligation. The ligands containing the larger (arylthio)methyl groups, [PhTt(Ph)] and [PhTt(p)()(Tol)], form monomeric [PhTt(Ar)]Cu(NCCH(3)) in solution and one-dimensional extended structures in the solid state. Each complex type reacted cleanly with acetonitrile, pyridine, or triphenylphosphine generating the corresponding four-coordinate monomer, of which [PhTt(Ph)]Cu(PPh(3)), [PhTt(p)()(Tol)]Cu(PPh(3)), and [Et(2)Bt]Cu(PPh(3))(2) have been structurally characterized.  相似文献   

14.
Treatment of [Mo(N(2))(PMe(3))(5)] with two equivalents GaCp* (Cp* = η(5)-C(5)(CH(3))(5)) leads to the formation of cis-[Mo(GaCp*)(2)(PMe(3))(4)] (1), while AlCp* did not react with this precursor. In addition, [Ni(GaCp*)(2)(PPh(3))(2)] (2a), [Ni(AlCp*)(2)(PPh(3))(2)] (2b), [Ni(GaCp*)(2)(PCy(3))(2)] (3a), [Ni(GaCp*)(2)(PMe(3))(2)] (3b), [Ni(GaCp*)(3)(PCy(3))] (4) and [Ni(GaCp*)(PMe(3))(3)] (5) have been prepared in high yields by a direct synthesis from [Ni(COD)(2)] and stoichiometric amounts of the ligands PR(3) and ECp* (E = Al, Ga), respectively. All compounds have been fully characterized by (1)H, (13)C, and (31)P NMR spectroscopy, elemental analysis and single crystal X-ray diffraction studies.  相似文献   

15.
The syntheses and reaction chemistry of two electron mixed-valence diphosphazane-bridged dirhodium and diiridium complexes M(2)(0,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2) [M = Rh (1), Ir (2); tfepma = MeN[P(OCH(2)CF(3))(2)](2), CN(t)Bu = tert-butyl isocyanide] are described. 1 and 2 undergo addition and two-electron oxidation and reduction chemistries. In the presence of CN(t)Bu, the addition product with the stoichiometry M(2)(0,II)(tfepma)(2)(CN(t)Bu)(3)Cl(2) [M = Rh (3), Ir (3)] is generated; in the presence of 1 equiv of CN(t)Bu and 2 equiv of bis(pentamethyl-cyclopentadienyl)cobalt(II), 1 and 2 are reduced to furnish M(2)(0,0)(tfepma)(2)(CN(t)Bu)(3) [M = Rh (5), Ir (6)], which feature both four- and five-coordinate M(0) centers. Complexes 1, 2, 5, and 6 all possess coordinatively unsaturated square planar M(0) centers that are reactive: (1) 2 reacts with PhICl(2) to produce Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(4) (7); (2) protonation of 2 with HX yields Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)Cl(2)HX [X = Cl(-) (8), OTs(-) (9)]; (3) protonation of 5 with HOTs produces [Rh(2)(I,I)(tfepma)(2)(CN(t)Bu)(3)(μ-H)](OTs); and (4) the reversible hydrogenation of 2 proceeds smoothly, furnishing the cis-dihydride complex Ir(2)(II,II)(tfepma)(2)(CN(t)Bu)(2)(H)(2)Cl(2) (11). Substitution of tfepma in 2 with bis(diphenylphsophino)methane (dppm) yields the orthometalated complex Ir(2)(II,II)(dppm)(PPh(o-C(6)H(4))CH(2)PPh(2))(CN(t)Bu)(2)Cl(2)H (12). The X-ray crystal structures of 11 compounds are presented and discussed, and spectroscopic characterization by multinuclear and variable temperature NMR provides details about solution structures and in some cases the formation of isomeric products. The electronic spectra of the new complexes are also described briefly, with absorption and emission features derived from the bimetallic core.  相似文献   

16.
Reactions of 1,1'-bis(dipheny1phosphino)cobaltocene with Co(PMe(3))(4), Ni(PMe(3))(4), Fe(PMe(3))(4), Ni(COD)(2), FeMe(2)(PMe(3))(4) or NiMe(2)(PMe(3))(3) afford a series of novel dinuclear complexes [((Me(3)P)[lower bond 1 start]Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2)))((Me(3)P)M[upper bond 1 end](η(5)-C(5)H(4)P[lower bond 1 end]Ph(2)))] (M = Co(1), Ni(2) and Fe(3)) [Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)Ni[upper bond 1 end](COD)](4), [Co(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)Ni[upper bond 1 end](PMe(3))(2)] (5) and [((Me(3)P)[lower bond 1 start]Co(Me)(η(5)-C(5)H(4)[upper bond 1 start]PPh(2)))((Me(3)P)Fe[upper bond 1 end](Me)(η(5)-C(5)H(4)P[lower bond 1 end]Ph(2)))] (6). Reactions of 1,1'-bis(dipheny1phosphino)ferrocene with Ni(PMe(3))(4), NiMe(2)(PMe(3))(3), or Co(PMe(3))(4) gives rise to complexes [Fe(η(5)-C(5)H(4)[upper bond 1 start]PPh(2))(2)M[upper bond 1 end](PMe(3))(2)] (M = Ni (7), Co (8)). The complexes 1-8 were spectroscopically investigated and studied by X-ray single crystal diffraction. The possible reaction mechanisms and structural characteristics are discussed. Density functional theory (DFT) calculations strongly support the deductions.  相似文献   

17.
The metathetical reactions of the lithium derivative of the monoanion [((t)BuN)(S)P(mu-N(t)Bu)(2)P(S)(NH(t)Bu)](-) (L) with CuCl/PPh(3), NiCl(2)(PEt(3))(2), PdCl(2)L'(2) (L' = PhCN, PPh(3)), and PtCl(2)(PEt(3))(2) produced the complexes (PPh(3))CuL (5), NiL(2) (6), PdCl(L)(PPh(3)) (7), PdL(2) (8), and Pt(PEt(3))(2)[((t)BuN)(S)P(mu-N(t)Bu)(2)P(S)(N(t)Bu)] (9). The X-ray structures of 5, 6, and 8 reveal a N,S-coordination for the chelating monoanion L with the metal centers in trigonal planar, tetrahedral, and square planar environments, respectively. By contrast, the dianionic ligand in the square planar Pt(II) complex 9 is S,S'-chelated to the metal center. (31)P NMR spectra readily distinguish between the N,S and S,S' bonding modes, and, on that basis, N,S chelation is inferred for the Pd(II) complex 7. Crystal data: 5, monoclinic, P2(1)/c, a = 19.175(4) A, b = 20.331(4) A, c = 10.017(6) A, beta = 91.79(3) degrees, V = 3903(2) A(3), and Z = 4; 6, orthorhombic, Pbcn, a = 14.298(5) A, b = 15.333(5) A, c = 24.378(5) A, beta = 90.000(5) degrees, V = 5344(3) A(3), and Z = 4; 8, monoclinic, P2(1)/n, a = 13.975(3) A, b = 14.283(3) A, c = 15.255(4) A, beta = 116.565(18) degrees, V = 2723.5(11) A(3), and Z = 2; 9, monoclinic, P2(1)/n, a = 12.479(6) A, b = 21.782(7) A, c = 17.048(5) A, beta = 100.30(3) degrees, V = 4559(3) A(3), and Z = 4.  相似文献   

18.
Reactions between methyldiphenylphosphane selenide, SePPh(2)Me, and different group 11 metal starting materials {CuCl, [CuNO(3)(PPh(3))(2)], AgOTf, [AgOTf(PPh(3))] (OTf = OSO(2)CF(3)), [AuCl(tht)], [Au(C(6)F(5))(tht)] and [Au(C(6)F(5))(3)(tht)] (tht = tetrahydrothiophene)} were performed in order to obtain several new species with metal-selenium bonds. The new complexes [CuCl(SePPh(2)Me)] (1), [AgOTf(SePPh(2)Me)] (2), [AuCl(SePPh(2)Me)] (5), [Au(C(6)F(5))(SePPh(2)Me)] (6) and [Au(C(6)F(5))(3)(SePPh(2)Me)] (7) were isolated and structurally characterized in solution by multinuclear NMR spectroscopy ((1)H, (31)P, (77)Se and (19)F where appropriate). Solid products were isolated also from the reactions between SePPh(2)Me and [CuNO(3)(PPh(3))(2)] or [AgOTf(PPh(3))], respectively. NMR experiments, including low temperature (1)H and (31)P NMR, revealed for them a dynamic behaviour in solution, involving the transfer of selenium from PPh(2)Me to PPh(3). In case of the isolated silver(i) containing solid an equilibrium between, respectively, monomeric [AgOTf(PPh(3))(SePPh(2)Me)] (3) and [AgOTf(PPh(2)Me)(SePPh(3))] (4), and dimeric [Ag(PPh(3))(μ-SePPh(2)Me)](2)(OTf)(2) (3a) and [Ag(PPh(2)Me)(μ-SePPh(3))](2)(OTf)(2) (4a) species was observed in solution. In case of the isolated copper(i) containing solid the NMR studies brought no clear evidence for a similar behaviour, but it can not be excluded in a first stage of the reaction. However the transfer of selenium between the two triorganophosphanes takes place also in this case, but the NMR spectra suggest that the final reaction mixture contains the free triorganophospane selenides SePPh(2)Me and SePPh(3) as well as the complex species [CuNO(3)(PPh(3))(2)], [CuNO(3)(PPh(2)Me)(2)] and [CuNO(3)(PPh(3))(PPh(2)Me)] in equilibrium. Single-crystal X-ray diffraction studies revealed monomeric structures for the gold(I) 6 and gold(III) 7 complexes. In case of compound 6 weak aurophilic gold(I)···gold(I) contacts were also observed in the crystal. DFT calculations were performed in order to understand the solution behaviour of the silver(I) and copper(I) species containing both P(III) and P(V) ligands, to verify the stability of possible dimeric species and to account for the aurophilic interactions found for 6. In addition, the nature of the electronic transitions involved in the absorption/emission processes observed for 6 and 7 in the solid state were also investigated by means of TD-DFT calculations.  相似文献   

19.
Complexes [Pt(mu-N,S-8-TT)(PPh(3))(2)](2) (1), [Pt(mu-S,N-8-TT)(PTA)(2)](2) (2), [Pt(8-TTH)(terpy)]BF(4) (3), cis-[PtCl(8-MTT)(PPh(3))(2)] (4), cis-[Pt(8-MTT)(2)(PPh(3))(2)] (5), cis-[Pt(8-MTT)(8-TTH)(PPh(3))(2)] (6), cis-[PtCl(8-MTT)(PTA)(2)] (7), cis-[Pt(8-MTT)(2)(PTA)(2)] (8), and trans-[Pt(8-MTT)(2)(py)(2)] (9) (8-TTH(2) = 8-thiotheophylline; 8-MTTH = 8-(methylthio)theophylline; PTA = 1,3,5-triaza-7-phosphaadamantane) are presented and studied by IR and multinuclear ((1)H, (31)P[(1)H]) NMR spectroscopy. The solid-state structure of 4 and 9 has been authenticated by X-ray crystallography. Growth inhibition of the cancer cells T2 and SKOV3 induced by the above new thiopurine platinum complexes has been investigated. The activity shown by complexes 4 and 9 was comparable with cisplatin on T2. Remarkably, 4 and 9 displayed also a valuable activity on cisplatin-resistant SKOV3 cancer cells.  相似文献   

20.
The chiral monodentate phosphine PhP[(C(5)Me(4))(2)] is readily obtained by oxidation of the lithium complex Li(2)[PhP(C(5)Me(4))(2)] with I(2), which couples the two cyclopentadienyl groups to form a five-membered heterocyclic ring. The steric and electronic properties of PhP[(C(5)Me(4))(2)] have been evaluated by X-ray diffraction and IR spectroscopic studies on a variety of derivatives, including Ph[(C(5)Me(4))(2)]PE (E = S, Se), Cp*MCl(4)[P[(C(5)Me(4))(2)]Ph] (M = Mo, Ta), Ir[P[(C(5)Me(4))(2)]Ph](2)(CO)Cl, and CpFe(CO)[PhP[(C(5)Me(4))(2)]]Me. For comparison purposes, derivatives of the related phospholane ligand PhP[Me(2)C(4)H(6)] have also been investigated, including Ph[Me(2)C(4)H(6)]PS, Ir[Ph[Me(2)C(4)H(6)]](2)(CO)Cl, Ir[Ph[Me(2)C(4)H(6)]](2)(CO)Me, Ir[PPh[Me(2)C(4)H(6)]](COD)(Cl), and Pd[P[Me(2)C(4)H(6)]Ph][eta(2)-C(6)H(4)C(H)(Me)NMe(2)]Cl. The steric and electronic properties of PhP[(C(5)Me(4))(2)] are determined to be intermediate between those of PPh(2)Me and PPh(3). Thus, the crystallographic cone angles increase in the sequence PPh(2)Me (134.5 degrees) < PhP[(C(5)Me(4))(2)] (140.2 degrees) < PPh(3) (148.2 degrees), while the electron donating abilities decrease in the sequence PPh(2)Me > PhP[(C(5)Me(4))(2)] > PPh(3). Finally, PhP[(C(5)Me(4))(2)] has a smaller cone angle and is less electron donating than the structurally similar phosphine, PhP[Me(2)C(4)H(6)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号