首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Hexafluorophosphate salts of mononuclear complexes [Ru(II)Cl(L)(terpy)]+ (L = dmbpy (1); dpbpy (2), sambpy (3), and dpp (7), and binuclear complexes [Ru(II)2Cl2(dpp)(terpy)2]2+ (8) and [Ir(III)Ru(II)Cl2(dpp)(terpy)2]3+ (9) were prepared and characterized. Abbreviations of the ligands are bpy = 2,2'-bipyridine, dmbpy = 4,4'-dimethyl-2,2'-bipyridine, dpbpy = 4,4'-diphenyl-2,2'-bipyridine, dpp = 2,3-bis(2-pyridyl)pyrazine, sambpy = 4,4'-bis((S)-(+)-alpha-1-phenylethylamido)-2,2'-bipyridine, and terpy = 2,2':6',2'-terpyridine. The absorption spectra of 8 and 9 are dominated by ligand-centered bands in the UV region and by metal-to-ligand charge-transfer bands in the visible region. The details of their spectroscopic and electrochemical properties were investigated. In both binuclear complexes, it has been found that the HOMO is based on the Ru metal, and LUMO is dpp-based. [Ir(III)Ru(II)Cl2(dpp)(terpy)2]3+, indicating intense emission at room temperature, and a lifetime of 154 ns. The long lifetime of this bimetallic chromophore makes it a useful component in the design of supramolecular complexes.  相似文献   

2.
Nitrosylruthenium complexes containing 2,2':6',2"-terpyridine (terpy) have been synthesized and characterized. The three alkoxo complexes trans-(NO, OCH3), cis-(Cl, OCH3)-[RuCl(OCH3)(NO)(terpy)]PF6 ([2]PF6), trans-(NO, OC2H5), cis-(Cl, OC2H5)-[RuCl(OC2H5)(NO)(terpy)]PF6 ([3]PF6), and [RuCl(OC3H7)(NO)(terpy)]PF6 ([4]PF6) were synthesized by reactions of trans-(Cl, Cl), cis-(NO, Cl)-[RuCl2(NO)(terpy)]PF6 ([1]PF6) with NaOCH3 in CH3OH, C2H5OH, and C3H7OH, respectively. Reactions of [3]PF6 with an acid such as hydrochloric acid and trifluoromethansulforic acid afford nitrosyl complexes in which the alkoxo ligand is substituted. The geometrical isomer of [1]PF6, trans-(NO, Cl), cis-(Cl, Cl)-[RuCl2(NO)(terpy)]PF6 ([5]PF6), was obtained by the reaction of [3]PF6 in a hydrochloric acid solution. Reaction of [3]PF6 with trifluoromethansulforic acid in CH3CN gave trans-(NO, Cl), cis-(CH3CN, Cl)-[RuCl(CH3CN)(NO)(terpy)]2+ ([6]2+) under refluxing conditions. The structures of [3]PF6, [4]PF6.CH3CN, [5]CF3SO3, and [6](PF6)2 were determined by X-ray crystallograpy.  相似文献   

3.
The synthesis and characterization of Ru(II) terpyridine complexes derived from 4'-functionalized 2,2':6',2'-terpyridine ligands by a multi step procedure have been described. The complexes are redox-active, showing both metal-centred (oxidation) and ligand-centred (reduction) processes. The antibacterial and antifungal activity of the synthesized ruthenium(II) complexes [Ru(attpy)2](PF6)2 (attpy = 4'-(4-acryloyloxymethylphenyl)-2,2':6',2'-terpyridine); [Ru(mttpy)2](PF6)2 (mttpy = 4'-(4-methacryloyloxymethylphenyl)-2,2':6',2'- terpyridine); [Ru(mttpy)(MeOPhttpy)](PF6)2 (MeOPhttpy = 4'-(4-methoxyphenyl)-2,2':6',2'-terpyridine); and [Ru(mttpy)(ttpy)](PF6)2 (ttpy = 4'-(4-methylphenyl)-2,2':6',2'-terpyridine) were tested against four human pathogens (Proteus vulgaris, Proteus mirabilis, Pseudomonas aeruginosa and Escherichia coli) and five plant pathogens (Curvularia lunata, Fusarium oxysporum, Fusarium udum, Macrophomina phaseolina and Rhizoctonia solani) by the well diffusion method and MIC values of the complexes are reported. A biological study of the complexes indicated that the complexes [Ru(mttpy)2](PF6)2 and [Ru(mttpy)(MeOPhttpy)](PF6)2 exhibit very good activity against most of the test pathogens and their activity is better than those of some of the commercially available antibiotics like tetracycline and the fungicide carbendazim.  相似文献   

4.
Ru(II) polypyridine species have been assembled about dirhodium(II, II) tetracarboxylate cores. The complexes prepared have general formulas [{(terpy)Ru(La)}n{Rh2(CH3COO)4-n(CH3CN)2}]2n+ (a-type compounds: terpy = 2,2':6',2' '-terpyridine; La = 4'-(p-carboxyphenyl)-2,2':6',2' '-terpyridine; n = 1, 1a; n = 2, cis-2a and trans-2a-cis and trans refer to the arrangement of the Ru(II) species around the dirhodium core; n = 3, 3a), [{(Lb)Ru(La)}n{Rh2(CH3COO)4-n(CH3CN)2}]2n+ (b-type compounds: Lb = 6-phenyl-2,4-di(2-pyridyl)-s-triazine; n = 1, 1b; n = 2, an inseparable mixture of cis-2b and trans-2b; n = 3, 3b; n = 4, 4b), and [{(terpy)Ru(Lc)}{Rh2(CH3COO)3(CH3CN)2}]2+ (1c; Lc = 6-(p-carboxyphenyl)-2,4-di(2-pyridyl)-s-triazine). As model species, also the mononuclear [(terpy)Ru(La)]2+ (5a), [(La)Ru(Lb)]2+ (5b), and [(terpy)Ru(Lc)]2+ (5c) have been prepared. All of the complexes have been characterized by several techniques, including NMR and mass spectra, and the stability of the various species is discussed. The absorption spectra of all of the compounds are dominated by the Ru(II) polypyridine moieties, showing intense ligand-centered (LC) bands in the UV region and intense metal-to-ligand charge-transfer (MLCT) bands in the visible. The compounds exhibit several metal-centered oxidation and ligand-centered reduction processes, which have been assigned to specific subunits. Both absorption and redox data indicate a supramolecular nature of the assembled systems. Efficient energy transfer from the MLCT triplet state of the Ru-based components to the lowest-energy excited state of the dirhodium core takes place for the a-type compounds at 298 K in acetonitrile solution, whereas such a process is inefficient for the b-type and c-type species, which exhibit the typical MLCT emission. At 77 K in butyronitrile matrix, Ru-to-Rh2 energy transfer is partly efficient for both the a-type and the b-type compounds and is inefficient for 1c. The reasons for such behavior are discussed by taking into account arguments concerning the driving force and reorganization energy of the complexes.  相似文献   

5.
A series of ruthenium complexes [Ru(OAc)(dioxolene)(terpy)] having various substituents on the dioxolene ligand (dioxolene = 3,5-t-Bu2C6H2O2 (1), 4-t-BuC6H3O2 (2), 4-ClC6H3O2 (3), 3,5-Cl2C6H2O2 (4), Cl4C6O2 (5); terpy = 2,2':6'2' '-terpyridine) were prepared. EPR spectra of these complexes in glassy frozen solutions (CH2Cl2:MeOH = 95:5, v/v) at 20 K showed anisotropic signals with g tensor components 2.242 > g1 > 2.104, 2.097 > g2 > 2.042, and 1.951 > g3 > 1.846. An anisotropic value, Deltag = g1 - g3, and an isotropic g value, g = [(g1(2) + g2(2) + g3(2))/3]1/2, increase in the order 1 < 2 < 3 < 4 < 5. The resonance between the Ru(II)(sq) (sq = semiquinone) and Ru(III)(cat) (cat = catecholato) frameworks shifts to the latter with an increase of the number of electron-withdrawing substituents on the dioxolene ligand. DFT calculations of 1, 2, 3, and 5 also support the increase of the Ru spin density (Ru(III) character) with an increase of the number of Cl atoms on the dioxolene ligand. The singly occupied molecular orbitals (SOMOs) of 1 and 5 are very similar to each other and stretch out the Ru-dioxolene frameworks, whereas the lowest unoccupied molecular orbital (LUMO) of 5 is localized on Ru and two oxygen atoms of dioxolene in comparison with that of 1. Electron-withdrawing groups decrease the energy levels of both the SOMO and LUMO. In other words, an increase in the number of Cl atoms in the dioxolene ligand results in an increase of the positive charge on Ru. Successive shifts in the electronic structure between the Ru(II)(sq) and Ru(III)(cat) frameworks caused by the variation of the substituents are compatible with the experimental data.  相似文献   

6.
Cationic complexes [Mo(eta(3)-allyl)(CO)2L3]+ (L3 = either nitrogen-donor tridentate ligand or three monodentate ligands) were prepared in high yield and under mild conditions using as precursors either the triflato complex [Mo(eta(3)-allyl)(OTf)(CO)2(NCMe)2] or the combination of the chloro complex [Mo(eta(3)-allyl)Cl(CO)2(NCMe)2] and the salt NaBAr'(4)(Ar'= 3,5-bis(trifluoromethyl)phenyl). The tridentate ligands employed were 2,2':6',2'-terpyridine (terpy) and cis,cis-1,3,5-cyclohexanetriamine (CHTA), whereas the monodentate ligands imidazole (im) and 3,5-dimethylpyrazole (dmpz) were chosen. In order to stabilize the labile intermediates, an excess of acetonitrile was used in most of the syntheses. However, the pyrazole complex was prepared through a nitrile-free route to avoid reactions at the coordinated nitrile. The solid state structures of [Mo(eta(3)-methallyl)(CO)2(terpy)]OTf (2), [Mo(eta(3)-methallyl)(CO)2(CHTA)]BAr'4 (3), [Mo(eta(3)-methallyl)(CO)2(NCMe)3]BAr'4 (4), [Mo(eta(3)-allyl)(CO)2(im)3]OTf (5) and [Mo(eta(3)-allyl)(CO)2(dmpz)3]BAr'4 (6) were determined by means of single-crystal X-ray diffraction.  相似文献   

7.
The heteroleptic and homoleptic ruthenium(II) complexes of 4'-cyano-2,2':6',2' '-terpyridine are synthesized by palladium catalyzed cyanation of the corresponding Ru(II) complexes of 4'-chloro-2,2':6',2' '-terpyridine. The introduction of the strongly electron-withdrawing cyano group into the Ru(tpy)(2)(2+) moiety dramatically changes its photophysical and redox properties as well as prolongs its room temperature excited-state lifetime.  相似文献   

8.
Jiang H  Lee SJ  Lin W 《Organic letters》2002,4(13):2149-2152
[structure: see text] New chiral terpyridines containing Frechét-type dendrons have been readily synthesized by coupling dendritic benzyl bromide and 4'-[6-(2,2'-dihydroxy-1,1'-binaphthyl)]-2,2':6'2' '-terpyridine. These chiral dendritic terpyridines were used to efficiently construct high molecular weight hybrid metal-organic dendrimers based on the Ru(II)-bis(terpy) linkage. Preliminary fluorescence measurements show generation-dependent fluorescence quenching behavior of 3,5-dimethoxybenzyl peripherals by the [Ru(terpy)(2)](2+) unit.  相似文献   

9.
The reaction of 2,9-di(pyrid-2'-yl)-1,10-phenanthroline (dpp) with [RuCl(3)·3H(2)O] or [Ru(DMSO)(4)Cl(2)] provides the reagent trans-[Ru(II)(dpp)Cl(2)] in yields of 98 and 89%, respectively. This reagent reacts with monodentate ligands L to replace the two axial chlorides, affording reasonable yields of a ruthenium(II) complex with dpp bound tetradentate in the equatorial plane. The photophysical and electrochemical properties of the tetradentate complexes are strongly influenced by the axial ligands with electron-donating character to stabilize the ruthenium(III) state, shifting the metal-to-ligand charge-transfer absorption to lower energy and decreasing the oxidation potential. When the precursor trans-[Ru(II)(dpp)Cl(2)] reacts with a bidentate (2,2'-bipyridine), tridentate (2,2';6,2'-terpyridine), or tetradentate (itself) ligand, a peripheral pyridine on dpp is displaced such that dpp binds as a tridentate. This situation is illustrated by an X-ray analysis of [Ru(dpp)(bpy)Cl](PF(6)).  相似文献   

10.
Detailed kinetic studies on ligand substitution reactions of [M(II)(terpy)Cl](+) complexes (M = Pt, Pd; terpy = 2,2':6',2'-terpyridine) with thiourea as entering nucleophile were for the first time performed in the imidazolium based ionic liquid [emim][NTf(2)] using stopped-flow techniques, opening the route to study fast reactions of transition metal complexes in ionic liquids.  相似文献   

11.
A series of N-alkylated derivatives of [Ru(pytpy)(2)]2+ (pytpy=4'-(4-pyridyl)-2,2':6',2'-terpyridine) has been synthesised and characterised. These include both model and functionalised complexes that complement previously reported iron(II) analogues. Reaction of [Ru(pytpy)(2)]2+ with bis[4-(bromomethyl)phenyl]methane leads to the formation of a [2+2] ruthenamacrocycle. Related ferramacrocycles could not be accessed by this route, and instead were prepared in two steps by first reacting bis[4-(bromomethyl)phenyl]methane or 4,4'-bis(bromomethyl)biphenyl with two equivalents of pytpy, and then treating the resulting bis(N-alkylated) product with iron(II) salts.  相似文献   

12.
Two new terpyridine dimanganese oxo complexes [Mn(2)(III,IV)(mu-O)(2)(terpy)(2)(CF(3)CO(2))(2)](+) (3) and [Mn(2)(III,III)(mu-O)(terpy)(2)(CF(3)CO(2))(4)] (4) (terpy = 2,2':6,2' '-terpyridine) have been synthesized and their X-ray structures determined. In contrast to the corresponding mixed-valent aqua complex [Mn(2)(III,IV)(mu-O)(2)(terpy)(2)(H(2)O)(2)](3+) (1), the two Mn atoms in 3 are not crystallographically equivalent. The neutral binuclear monooxo manganese(III,III) complex 4 exhibits two crystallographic forms having cis and trans configurations. In the cis complex, the two CF(3)CO(2)(-) ligands on each manganese adopt a cis geometry to each other; one CF(3)CO(2)(-) is trans to the oxygen of the oxo bridge while the second is cis. In the trans complex, the two coordinated CF(3)CO(2)(-) have a trans geometry to each other and are cis to the oxo bridge. The electrochemical behavior of 3 in organic medium (CH(3)CN) shows that this complex could be oxidized into its corresponding stable manganese(IV,IV) species while its reduced form manganese(III,III) is very unstable and leads by a disproportionation process to Mn(II) and Mn(IV) complexes. Complex 4 is only stable in the solid state, and it disproportionates spontaneously in CH(3)CN solution into the mixed-valent complex 3 and the mononuclear complex [Mn(II)(terpy)(2)](2+) (2), thereby preventing the observation of its electrochemical behavior.  相似文献   

13.
We report the successful use of Ru(II)(terpy)(2) (1, terpy = 2,2':6',2'-terpyridine) as a catalyst in the Belousov-Zhabotinsky (BZ) oscillating chemical reaction. We also examine several additional Ru(II) complexes, Ru(II)(bipy)(2)(L')(2) (2, L' = 4-pyridinecarboxylic acid; bipy = 2,2'-bipyridine) and Ru(II)(bipy)(2)(L') (3, L' = 4,4'-dicarboxy-2,2'-bipy; 4, L' = N-allyl-4'-methyl-[2,2'-bipy]-4-carboxamide; 5, L' = bipy), for catalyzing the BZ reaction. While 2 is unable to trigger BZ oscillations, probably because of the rapid loss of L' in a BZ solution, the other bipyridine-based Ru(II)-complexes can catalyze the BZ reaction, although their catalytic activity is adversely affected by slow ligand substitution in a BZ solution. Nevertheless, the successfully tested Ru(II)(terpy)(2) and Ru(II)(bipy)(2)(L') catalysts may provide useful building blocks for complex functional macromolecules.  相似文献   

14.
A new series of V-shaped trinuclear metallorods and X-shaped pentanuclear metallostars has been prepared by the reaction of metal complexes bearing pendant phenolic functionalities with complexes containing electrophilic ligands. Specifically, {M(tpy)2} motifs (M=Ru or Os; tpy=2,2':6',2'-terpyridine) bearing one or two pendant 3,5-dihydroxyphenyl substituents at the 4-position of the central ring of the tpy have been reacted with the complexes [Ru(tpy)(Xtpy)]2+ (X=Cl or Br) to form new ether-linked species. The energy transfer from ruthenium to osmium in these complexes has been investigated in detail and the efficiency of transfer shown to be highly temperature dependent; the energy transfer is highly efficient at low temperature, whereas at room temperature nonradiative and nontransfer deactivation of the excited {Ru(tpy)2}* domains is most significant.  相似文献   

15.
A series of new tridentate polypyridine ligands, made of terpyridine chelating subunits connected to various substituted 2-pyrimidinyl groups, and their homoleptic and heteroleptic Ru(II) complexes have been prepared and characterized. The new metal complexes have general formulas [(R-pm-tpy)Ru(tpy)]2+ and [Ru(tpy-pm-R)2]2+ (tpy = 2,2':6',2' '-terpyridine; R-pm-tpy = 4'-(2-pyrimidinyl)-2,2':6',2' '-terpyridine with R = H, methyl, phenyl, perfluorophenyl, chloride, and cyanide). Two of the new metal complexes have also been characterized by X-ray analysis. In all the R-pm-tpy ligands, the pyrimidinyl and terpyridyl groups are coplanar, allowing an extended delocalization of acceptor orbital of the metal-to-ligand charge-transfer (MLCT) excited state. The absorption spectra, redox behavior, and luminescence properties of the new Ru(II) complexes have been investigated. In particular, the photophysical properties of these species are significantly better compared to those of [Ru(tpy)2]2+ and well comparable with those of the best emitters of Ru(II) polypyridine family containing tridentate ligands. Reasons for the improved photophysical properties lie at the same time in an enhanced MLCT-MC (MC = metal centered) energy gap and in a reduced difference between the minima of the excited and ground states potential energy surfaces. The enhanced MLCT-MC energy gap leads to diminished efficiency of the thermally activated pathway for the radiationless process, whereas the similarity in ground and excited-state geometries causes reduced Franck Condon factors for the direct radiationless decay from the MLCT state to the ground state of the new complexes in comparison with [Ru(tpy)2]2+ and similar species.  相似文献   

16.
Reaction of {(mu-bpym)[RuCl(terpy)]2}(PF6)2, bpym = 2,2'-bipyrimidine and terpy = 2,2':6',2'-terpyridine, with NaNO2 yields {(mu-bpym)[Ru(NO2)(terpy)]2}(PF6)2. In CH3CN/0.1 M Bu4NPF6 both dinuclear complexes can undergo two reversible bpym-centered one-electron reduction processes and two metal-centered one-electron oxidation steps, the latter involving mixed-valent intermediates with weak intermetallic coupling. Acidification of {(mu-bpym)[Ru(NO2)(terpy)]2}(PF6)2 does not lead to the expected {(mu-bpym)[Ru(NO)(terpy)]2}6+ but, probably because of the high charge, to the insoluble but structurally and IR-spectroscopically characterised pseudo-base product syn-{(mu-bpym-(4-OH))[Ru(NO)(terpy)]2}(PF6)5. The addition of one hydroxide to one of the 4-positions of bis-chelating bpym interrupts the aromatic pi conjugation and is accompanied by corresponding intra-pyrimidine bond length variations, however, the effect on the electronic interaction of the two different syn positioned {RuNO}6 moieties remains small, possibly due to their situation within the central molecular pi plane.  相似文献   

17.
Seven useful mixed-ligand complexes in the form of [Ir(terpy)(L)Cl]2+ were prepared and their spectroscopic and electrochemical properties were investigated. The ligands used were terpy = 2,2':6',2'-terpyridine, L = 2,2'-bipyridine, 4,4'-dimethyl-2,2'-bipyridine, 4,4'-diphenyl-2,2'-bipyridine, 1,10-phenanthroline, 5-phenyl-1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, 2,3-bis(2-pyridyl)pyrazine. Synthetic methods were developed by a sequential ligand-replacement which occurred in the reaction vessel using a microwave oven. All complexes showed that LUMOs are based on the pi-system contribution of the terpyridine ligand for [Ir(terpy)(bpy)Cl]2+, [Ir(terpy)(dmbpy)Cl]2+, [Ir(terpy)(dpbpy)Cl]2+, [Ir(terpy)(phen)Cl]2+, [Ir(terpy)(dpphen)Cl]2+ and [Ir(terpy)(phphen)Cl]2+. On the other hand, the LUMO in the [Ir(terpy)(bppz)Cl]2+ complex is localized on the pi-system of the bppz ligand, whereas the HOMOs in the iridium complexes are localized on the terpyridine ligand. It was found that Ir(terpy)(L)Cl emits in a fluid solution at room temperature. The ancillary ligands, such as terpy and bpy, have been explored to extend the lifetime of the triplet 3(pi-pi') excited states of Ir(III) terpyridine complexes. Ir(III) terpyridine units with an electron donor (dmbpy) or electron acceptor substituents (terpy, dpbpy, phphen, dpphen and bppz) are found to decrease the energy of the 3LC states for use as photosensitizer molecular components in supramolecular devices. The spectroscopic and electrochemical details are also reported herein.  相似文献   

18.
Compounds [RuII(bipy)(terpy)L](PF6)2 with bipy = 2,2'-bipyridine, terpy = 2,2':6',2"-terpyridine, L = H2O, imidazole (imi), 4-methylimidazole, 2-methylimidazole, benzimidazole, 4,5-diphenylimidazole, indazole, pyrazole, 3-methylpyrazole have been synthesized and characterized by 1H NMR, ESI-MS and UV/Vis (in CH3CN and H2O). For L = H2O, imidazole, 4,5-diphenylimidazole and indazole the X-ray structures of the complexes have been determined with the crystal packing featuring only few intermolecular C-H...pi or pi-pi interactions due to the separating action of the PF6-anions. Complexes with L = imidazole and 4-methylimidazole exhibit a fluorescence emission with a maximum at 662 and 667 nm, respectively (lambdaexc= 475 nm, solvent CH3CN or H2O). The substitution of the aqua ligand in [Ru(bipy)(terpy)(H2O)]2+ in aqueous solution by imidazole to give [Ru(bipy)(terpy)(imi)]2+ is fastest at a pH of 8.5 (as followed by the increase in emission intensity). Coupling of the [Ru(bipy)(terpy)]2+ fragment to cytochrome c(Yeast iso-1) starting from the Ru-aqua complex was successful at 35 degrees C and pH 7.0 after 5 d under argon in the dark. The [Ru(bipy)(terpy)(cyt c)]-product was characterized by UV/Vis, emission and mass spectrometry. The location where the [Ru(bipy)(terpy)] complex was coupled to the protein was identified as His44 (corresponding to His39 in other numbering schemes) using digestion of the Ru-coupled protein by trypsin and analysis of the tryptic peptides by HPLC-high resolution MS.  相似文献   

19.
Liu P  Wong EL  Yuen AW  Che CM 《Organic letters》2008,10(15):3275-3278
"Iron(II) salt + 4,4',4'-trichloro-2,2':6',2'-terpyridine" is an effective catalyst for epoxidation and aziridination of alkenes and intramolecular amidation of sulfamate esters. The epoxidation of allylic-substituted cycloalkenes achieved excellent diastereoselectivities up to 90%. ESI-MS results supported the formation of iron-oxo and -imido intermediates. Derivitization of Cl 3terpy to O-PEG-OCH 3-Cl 2terpy renders the terpyridine unit to be recyclable, and the "iron(II) salt + 4,4'-dichloro-4'- O-PEG-OCH 3-2,2':6',2'-terpyridine" protocol can be reused without a significant loss of catalytic activity in the alkene epoxidation.  相似文献   

20.
Two new copper(II) compounds of chloranilate and 2,2':6',2' '-terpyridine have been synthesized, and the structures have been solved by the single-crystal X-ray diffraction method. The crystal structure of [[Cu(2)(CA)(terpy)(2)][Cu(CA)(2)]](n)(1), where H(2)CA = chloranilic acid and terpy = 2,2':6',2' '-terpyridine, consists of two modules, the dimer unit [Cu(2)(CA)(terpy)(2)](2+) and the anionic mononuclear unit [Cu(CA)(2)](2)(-), forming an alternated chain. The chain is stabilized by semicoordinating and additional but efficient secondary bonding interactions. The crystal structure of [[Cu(2)(CA)(terpy)(2)(dmso)(2)][Cu(CA)(2)(dmso)(2)](EtOH)](n)(2), where dmso = dimethyl sulfoxide, consists of solvent molecules and two discrete modules, the dimer unit [Cu(2)(CA)(terpy)(2)(dmso)(2)](2+) and the anionic mononuclear unit [Cu(CA)(2)(dmso)(2)](2)(-). The dimer units form a layer by secondary bonding interactions, and the monomer units and ethanol molecules are introduced between the layers. The magnetic properties of 1 and 2 have been investigated in the temperature range 2.0-300 K. A weak ferromagnetic interaction was observed in 1, J(a) = 2.36 cm(-)(1) and zJ(b) = -0.68 cm(-)(1) while no exchange coupling was observed in 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号