首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
微槽道中纳米流体沸腾换热特性研究   总被引:2,自引:0,他引:2  
为研究纳米流体在微槽道中的沸腾换热特性及规律,分别以去离子水和体积浓度为0.2%、0.5%的水基Al2O3纳米流体为工质进行试验,研究质量流速、热流密度、进口过冷度、槽道尺寸等因素对沸腾传热系数的影响及其两相摩擦压降与出口干度的关联分析和沸腾换热关联式对比拟合.试验结果表明:在一定热流密度和质量流速下,传热系数随槽道尺...  相似文献   

2.
针对常规闭式并联微通道内流动沸腾换热存在气泡生长受限产生的堵塞效应以及不同通道内气泡核化生长不同步导致的并联通道传热不稳定性等问题,设计了一种顶部联通型开式并联微通道蒸发器。采用无水乙醇为工质,在入口过冷度为15℃、质量流速为175 kg·m~(-2)·s~(-1)及热流密度270~761 kW·m~(-2)条件下,开展了该新型微通道冷却器中流动沸腾换热的实验研究,发现了传热系数随干度的增加呈现三类典型趋势,即传热系数单调上升、传热系数先上升后下降再上升、传热系数先上升再保持基本不变;结合高速可视化流型研究,发现了与流型密切关联的三类传热机理,即:1)以气泡核化为主的核态沸腾换热;2)上游核态沸腾为主,下游两相强制对流换热主导;3)偏离核态沸腾后的膜态沸腾换热。分析表明,沸腾数Bo是主导三类传热模式的主要无量纲数。  相似文献   

3.
陶瓷微通道内的传热和压降特性   总被引:2,自引:0,他引:2  
本文对一种新型陶瓷微通道换热器的传热与流动阻力特性进行了实验研究。实验工质分别为3M公司的HFE-7100和水。对于HFE7100流体,在传热面温度为40℃时热流密度可达10W/cm~2;对于水,传热面温度为35℃时热流密度可达约13W/cm~2。流动阻力特性实验结果表明,无论对于水还是HFE7100流体,在本实验范围内压降小于4.8kPa。  相似文献   

4.
以去离子水为工质,对高为2mm,宽分别为0.3mm、0.6mm、2mm的矩形微槽中的两相传热特性与流动阻力特性进行了实验与理论研究。实验结果表明,三种微槽的饱和沸腾传热系数随着热流密度的增加而增加,并对三种微槽传热系数随热流密度关系的实验数据进行了拟合,得出了实验条件下的传热系数与热流密度的关联式及相同热流密度或者质量流速下槽道尺寸对传热系数的影响;此外,矩形微槽道压降△p随着尺寸的减小而增大。  相似文献   

5.
竖直矩形窄缝内流动沸腾压降实验与模型研究   总被引:3,自引:0,他引:3  
本文实验研究了水在间隙为2.1、2.2、3.6 mm的垂直矩形窄通道内流动沸腾压降,包括入口过冷的情况,得到了在不同操作条件下压降随热流密度的变化曲线,同时分析了曲线变化的原因.实验结果发现:在实验参数范围内,流动沸腾的压降随着质量流速、热流密度和入口干度增加而增大;随着窄缝间隙的增大而减小.窄通道内的压降计算与大通道有显著不同,本文针对窄通道的特点,修正了传统的压降计算模型,模型预测值与实验结果比较,误差在±15.4%之内.  相似文献   

6.
本文将“米”字形放射状槽道强化面积大、气泡脱离阻力小与毛细芯成核位点多等优点相结合,设计加工出一系列铜基放射状槽道与烧结毛细芯耦合散热表面,在10 K、20 K和30 K三个不同过冷度下进行了HFE-7100池沸腾换热实验,得到不同表面在不同过冷度条件下的沸腾换热性能。结果表明,槽深对换热影响较大,耦合毛细芯的铜基散热结构可以进一步提高临界热流密度和换热系数。最大临界热流密度和换热系数分别可达130.1 W/cm2和0.94 W/(cm2·K),并对实验过程中的气泡动力学行为进行了分析。  相似文献   

7.
微通道内的沸腾两相流动是解决高热流密度下微电子设备散热最有潜力的手段之一。本文基于逆流式微通道热沉设计,实验研究了不同流量调配下逆流式微通道内的流动沸腾特性。讨论了流量分配对微通道内流动沸腾过程中传热特性、压降分布和壁面温度演化规律的影响。实验结果表明:当逆流式通道两侧的质量流量相同时,壁面呈现较好的温度均匀性,且两侧流动压降基本保持一致。两侧流量相差越大,其对应最大两相压降偏差越大。逆流式微通道的壁面温度分布和局部热点的位置可以通过改变两侧质量流量的大小实现有效控制。同时,微通道内流体的演化周期同样可以根据两侧质量流量的高低实现调控。  相似文献   

8.
文中对竖直圆管内液氮流动沸腾压降进行实验研究,分析热流密度、质量流量对液氮两相流动摩擦压降的影响以及热流密度对测试段总压降的影响。在本实验工况范围内,两相流摩擦压降随着热流密度和质量流速的增加而变大,且测试段总压降随着热流密度的增加而降低。分别利用均相模型、L-M模型和Chisholm B系数模型对实验结果进行预测,并比较了预测值与实验值,结果表明本实验工况下均相模型预测效果最好。  相似文献   

9.
设计加工一种带有入口节流结构的铜基微通道换热器,理论分析其传热模型、实验测量微通道换热器内相变换热的传热特性和压力特性。结果表明:换热器内部的热传递过程为其主要换热模式;换热器表面温度随加热热流密度的增大而增大;微通道入口流速对表面温度影响较小;入口工质过冷度线性影响换热器的表面温度。热流密度在不同阶段对换热系数有不同影响,热流密度为360 W/cm~2时,换热器换热系数出现最大值;换热器压降随热流密度和系统流速的增加而增大。  相似文献   

10.
过冷态超流氦中的稳态传热   总被引:1,自引:1,他引:0  
本文详细研究了过冷态超流氦(Hellp)中的稳态传热,内容包括临界热流密度、膜沸腾传热系数、以及过冷态超流氦浴温度和压力对稳态传热特性的影响.对最大临界热流密度的理论性探讨——“相对临界热流密度法”较为成功地阐述了 Hellp 的最大临界热流密度.  相似文献   

11.
为模拟偏滤器水冷模块微纳米结构化表面的传热特性,结合微纳表面可视化微观观察实验数据,在现有气泡参数模型的基础上,对接触角、气泡脱离直径、气泡脱离频率、汽化核心密度等参数模型进行修改,提出可模拟微纳表面过冷流动沸腾传热效果的计算模型。用该模型对压力为4MPa、速度为10m·s-1、进口温度为423K的偏滤器水冷结构中的过冷流动沸腾进行计算,得到常规水冷通道与微纳表面水冷通道各结构的温度与气相体积分布。计算结果表明,微纳表面的平均传热系数提高约一倍;在无氧铜与铬锆铜的许用温度范围内,微纳表面通道偏滤器承受的稳态热流密度可达14MW·m-2。  相似文献   

12.
矩形微槽道饱和沸腾临界热流密度特性   总被引:4,自引:2,他引:2  
对矩形微槽中的流动沸腾临界热流密度进行了实验研究。研究CHF随质量流速、进口过冷度和出口干度的增加而出现的变化趋势,以及槽道尺寸对CHF的影响。搭建试验平台,在不同槽道当量直径、较大范围的质量流速和不同进口过冷度条件下,获得以去离子水为工质两相沸腾传热的实验数据。由于常规尺寸槽道CHF预测关联式并不具有普遍性,所以提出了一个适用于微槽道饱和沸腾CHF的预测模型。并通过与该文以及参考文献中实验数据进行对比,验证了该模型的适用性。  相似文献   

13.
本文开展了亚临界压力下垂直上升内螺纹管中水的传热特性的实验研究,并与对应条件下光管内水的传热特性进行了对比、分析.结果发现:内螺纹管和光管中两相饱和流动沸腾换热随热流密度的增加或压力的升高而增大,基本不随质量流速的变化而变化;相同工况下内螺纹管的饱和沸腾换热系数大约为光管的1.1~1.2倍。内螺纹管和光管的过冷沸腾起始干度都随质量流速的减小或者压力的升高或者热流密度的增大而增大;在相同工况下本文实验内螺纹管中的过冷沸腾起始干度比光管中的要小至少0.2。光管中主要发生偏离核态沸腾(DNB),临界干度随热流密度的减小或质量流速的增加或压力的降低而增大;内螺纹管中主要发生烧干,运行参数对临界干度的影响不大。  相似文献   

14.
本文探究了内径3 mm水平光管内氨(R717)的沸腾两相流换热特性以及环状流的干涸特性.实验工况:饱和温度-10~10℃,热流密度10~30 kW/m2,质量流率40~200 kg/(m2·s),干度0.1~1.实验结果表明,质量流率、饱和温度及热流密度的增加都会强化沸腾换热.增加质量流率会强化环状流内的对流沸腾;增大...  相似文献   

15.
高功率电子芯片的安全运行需要高效的散热技术。流动沸腾换热由于高换热系数受到广泛关注。为精确模拟微通道内流动沸腾复杂两相流过程,本文提出了耦合VOF方法的在相界面处迭代求解能量源项的相变模型。针对单微柱微通道内流动沸腾换热过程进行了数值模拟,分析了瞬态两相流过程及温度场演变规律,查明了热流密度及进口过冷度的影响机制。结果表明,由于局部蒸汽的覆盖,不同工况下微通道内流动沸腾存在热阻的转折点,高热流密度对应更高的气泡生长速度和成核面积,高过冷度会延缓转折点,但整体热阻将升高。  相似文献   

16.
以水为工质,模拟研究不同条件下水平矩形微通道沸腾流动过程中气泡发生发展及流型演变与温度、压力、传热系数的耦合关系。结果表明:持续吸热的弹状流会占据通道大部分流动区域,易造成堵塞和局部高温;泡状流区域压力波动幅度较小,较长弹状气泡和大雷诺数均会导致较大的局部压降;升高热流密度减小了单相区长度,强化了核态沸腾,提高了通道整体传热性能;增大雷诺数使得通道内气泡尺寸减小,减少了两相流动的不稳定与堵塞现象,通道整体传热性能得以提升。  相似文献   

17.
以去离子水为工质,配合高速摄像观测,研究了截面为0.5 mm×5 mm的微细窄矩形通道内氧化锌微米线结构表面的竖直流动过冷沸腾。流量范围200~400 kg·m-2·s-1,过冷度为10 K,热流密度最高为200 kW·m-2。分析了不同工况下过冷沸腾的沸腾曲线、平均换热系数、局部换热系数和流型特征。  相似文献   

18.
本文设计搭建了带有蒸发器的两相闭式热虹吸管的气液两相流动与传热特性的可视化实验平台,制备了多种尺寸的光滑表面蒸发器,并采用电镀的方法制备了微纳米尺度的多孔表面蒸发器,研究了光滑表面蒸发器和微纳米尺度多孔表面蒸发器内工质R134a的气液两相运行状态和相变传热过程。研究结果表明:光滑表面蒸发器的流道尺寸会影响其在不同热流密度条件下的传热系数;多孔表面蒸发器的传热效果要远高于光滑表面的蒸发器,最高达到光滑表面蒸发器传热系数的4倍;不同尺寸的光滑表面蒸发器和多孔表面蒸发器热流密度从零到临界热流密度所经过的沸腾状态也存在较大差异。  相似文献   

19.
由于传热系数高、温度均匀性好及工质需求量少,微通道沸腾冷却成为极具前景的冷却方式。本文主要以烧结超薄泡沫铜为研究对象,以去离子水为工质,探讨孔隙率、入口温度和质量流率对沸腾换热特性进行研究。实验表明,增加流量和降低入口过冷度都可提升泡沫铜的换热性能。超薄泡沫铜孔隙率越高,其换热性能越好,高孔隙率泡沫铜换热性能比较优越,超薄泡沫铜两相换热系数提升约30%。  相似文献   

20.
本文对卧式螺旋管内R134a过冷流动沸腾的起始点进行实验研究,根据壁面温度的变化规律判定过冷沸腾起始点。在热流密度逐渐增大的情况下,对过冷沸腾发生时相关参数的不同变化进行了研究,得到了过冷沸腾起始点上壁面过热度和热流密度随位置的变化规律。分析了入口参数对过冷沸腾起始点的热流密度的影响趋势。对实验数据进行回归分析,发展了适用于卧式螺旋管内过冷沸腾起始点热流密度的经验关联式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号