首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lipase from Candida rugosa was immobilized by entrapment on poly(N-vinyl-2-pyrrolidone-co-2-hydroxyethyl methacrylate)(poly[VP-co-HEMA]) hydrogel, and divinylbenzene was the crosslinking agent. The immobilized enzymes were used in the esterification reaction of oleic acid and butanol in hexane. The activities of the immobilized enzymes and the leaching ability of the enzyme from the support with respect to the different compositions of the hydrogels were investigated. The thermal, solvent, and storage stability of the immobilized lipases was also determined. Increasing the percentage of composition of VP from 0 to 90, which corresponds to the increase in the hydrophilicity of the hydrogels, increased the activity of the immobilized enzyme. Lipase immobilized on VP(%):HEMA(%) 90∶10 exhibited the highest activity. Lipase immobilized on VP(%):HEMA(%) 50∶50 showed the highest thermal, solvent, storage, and operational stability compared to lipase immobilized on other compositions of hydrogels as well as the native lipase.  相似文献   

2.
The copolymerisation of 2-hydroxyethyl methacrylate and a zwitterionic methacrylate, namelyN,N-dimethyl-N-methacryloxyethyl-N-(3-sulphopropyl)-ammonium betaine (SPE), in the presence of a tetrafunctional crosslinker has been effected to 100% conversion by -irradiation. The resultant xerogels of different compositions were swollen to equilibrium in water to yield hydrogels. Volumetric swelling and compression-strain measurements were made over the temperature range 278–343 K. All these copolymers showed an increasing volumetric swelling with temperature, but the derived values of the partial molar enthalpy, entropy and Gibbs free energy of dilution showed certain differences which were interpreted on the basis of copolymer dyad distribution.  相似文献   

3.
《European Polymer Journal》2004,40(8):1683-1690
Multifunctional polymeric materials were obtained from poly(methacrylic acid-co-2-hydroxyethyl methacrylate), to be used as a raw material in the manufacture of contact lens and as drug delivery systems. Poly(methacrylic acid-co-2-hydroxyethyl methacrylate) was prepared by free-radical polymerization in aqueous solution at 60 °C using potassium persulfate (KPS) as initiator and N,N-methylenebisacrylamide (BIS) as cross-linker agent. The dynamic and equilibrium swelling properties of dry glassy poly(methacrylic acid-co-2-hydroxyethyl methacrylate) polymeric networks were studied as a function of pH and methacrylic acid (MAA) content. The water content increase as MAA content and pH increase. Timolol maleate delivery from poly(MAA) and poly(2-hydroxyethyl methacrylate) (HEMA) homopolymers was studied and the results show a Fickian diffusion behavior.  相似文献   

4.
Catalysis of hydrolytic decomposition of p-nitrophenyl butyrate with the copolymer of N-vinylcaprolactam and N-vinylimidazole in an n-dodecane-water emulsion was studied. The reaction rate in the emulsion is higher than that in a solution containing no emulsified dodecane particles. The data obtained indicate that the reactions involving the surface-active substrate and catalyst can be accelerated by interfaces. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2109–2111, December, 2006.  相似文献   

5.
Thermoresponsive hydrogels based on N-isopropylacrylamide, N-hydroxymethylacrylamide, and 2-hydroxyethyl methacrylate, poly(NIPAM–co-NHMAAm–co-HEMA), have been synthesized and their swelling—deswelling behavior studied as a function of NIPAM concentration, NIPAM/NHMAAm and NIPAM/HEMA mole ratio, and total monomer concentration. Copolymers varying in composition have been obtained by redox copolymerization of these three monomers. Temperature has been changed in the ranges from 4 to 70 °C at fixed pH and total ionic strength. Equilibrium swelling ratio, dynamic swelling ratio, and dynamic deswelling ratio were evaluated for all hydrogel systems. The equilibrium swelling ratios of the copolymeric gels decrease with increasing NHMAAm and HEMA content. The formation of the intermolecular hydrogen bonding between hydroxyl and amido groups decreases the hydrophilic group numbers of the gel and the affinity of the gel towards water decreases. The copolymer gels also showed rapid volume transitions with time. The time required for equilibrium shrinking increased with increasing NHMAAm and HEMA content in the gel.  相似文献   

6.
Poly(methyl methacrylate) (PMMA) was found to be suitable for the immobilization of lipase fromCandida rugosa. The best result based on hydrolytic activity was obtained by adsorption of the purified unbuffered enzyme solution onto PMMA beads without any modification of the beads. Prolonged exposure of the protein to the beads increased its adsorption but the expressed activity decreased after 1 h of exposure. The magnitude of the immobilized activity also varied with the size of the beads. Immobilization of the lipase shifted its optimal reaction temperature from 37 to 45°C. The immobilized enzyme is also more stable than the free enzyme in solution. The operational half-life of the immobilized lipase packed in a column and assayed in a closed system is 40 d.  相似文献   

7.
Water-soluble branched N-vinylpyrrolidone-crotonic acid-2-hydroxyethyl methacrylate terpolymers containing labile interchain urethane cross-links were prepared. Their molecular-weight characteristics were determined, and the hydrolytic stability under conditions close to those in a living body was evaluated. Polymeric salts of gentamicin were prepared from linear and branched chemodegradable N-vinylpyrrolidone terpolymers.  相似文献   

8.
Properties of invertase immobilized on poly(2-hydroxyethyl methacrylate) microbeads activated by epichlorohydrin or cyanuric chloride were studied. After 20 repeated uses for 3 days, the activity of the immobilized enzyme was 92–93%. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1793–1797, October, 2006.  相似文献   

9.
Lipase was immobilized in silk fibers through glutaraldehyde cross-linking to a maximum loading of 59 U/g silk-fiber and the immobilized lipase was utilized for the hydrolysis of sunflower oil (Helianthus annuus). The hydrolytic activity of the lipase, which was poor in biphasic oil in water system, was increased significantly when the sunflower oil was emulsified in aqueous medium. The hydrolytic activities of the immobilized lipase were 48.73 ± 1.26 U, 36.11 ± 0.96 U, and nil when the substrate sunflower oil was used as emulsion created by a rhamnolipid biosurfactant, Triton X100, and ultrasonication, respectively. Although the efficiency of the immobilized lipase was less than 12% than the corresponding free lipase, the immobilized lipase could be reused for the biosurfactant-mediated hydrolysis of sunflower oil up to third cycle of the reaction. The yield of the fatty acids in the second, third, and fourth cycles were 49.45%, 22.91%, and 5.09%, respectively, of the yield obtained in the first cycle.  相似文献   

10.
Temperature-sensitive N-vinylcaprolactam (VCL)-based microgel particles were synthesized by emulsion polymerization in a batch reactor. To avoid the hydrolysis of VCL, optimized buffered reactions were carried out by using VCL as main monomer, N,N′-methylenebisacrylamide (BA) as cross-linker and a sugar-based comonomer (3-O-methacryloyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose, 3-MDG). The amounts of initiator, cross-linker, surfactant, comonomer, and reaction temperature were the reaction variables. The effects of these variables on the kinetic features of the different polymerizations were analyzed. The colloidal characterization of the microgel particles consists of the analysis of the evolution of the average hydrodynamic diameters as a function of the temperature of the medium. The results showed that in all cases BA reacted faster than VCL. All final microgel particles showed swelling-de-swelling behavior by changing the temperature of the medium in which they are dispersed. Initially formed microgel particles were not temperature-sensitive being necessary up to about 30% of VCL conversion for the onset of the swelling-de-swelling behavior. The final colloidal characteristics of these new microgels can be tuned by modulating the reaction variables.  相似文献   

11.
Summary 1. Under certain conditions, lipase immobilized on cellulose-based ion-exchange materials can be obtained. The best adsorbent is DEAE-cellulose.2. The optimum conditions for the immobilization of lipase on DEAE-cellulose are pH 8.0, time of contact with the support 15–20 min, temperature 10° C.3. The immobilized lipase (DEAE-cellulose-lipase) retains the main functional properties of the native enzyme.Department of Microbiology, Academy of Sciences of the Uzbek SSR, Tashkent. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 267–271, March–April, 1977.  相似文献   

12.
To improve application of hydrophobic polymethyl methacrylate intraocular lens (PMMA IOL) in a convenient and continuous way, 2-hydroxyethyl methacrylate (HEMA) was immobilized by dielectric barrier discharge plasma at relatively high pressure. The hydrophilicity and topography of the modified IOL surface were comprehensively evaluated by contact angle and atomic force microscopy, while the surface biocompatibility of the modified IOL was investigated by platelets adhesion and cells proliferation experiments. The results revealed that the hydrophilicity of the HEMA-g-PMMA IOL samples were significantly and permanently improved. Less platelets attachment was observed on the modified IOL, especially in the HEMA2-g-PMMA IOL group (with 1.65 × 10−1 mol/L HEMA concentration), which also suppressed the proliferation of cells.  相似文献   

13.
To develop monodisperse amphiphilic polymer particles on which a large amount of lipase could be immobilized, we performed seed polymerizations of glycidyl methacrylate and allyl methacrylate in the presence of nonpolar inert and polar inert solvents. The amphiphilic porous polymer particles, which had both hydrophilic guanidino groups and hydrophobic stearoyl groups, were synthesized in the presence of n‐decane and had a large amount of macropores with diameters of 50–1000 nm. The amount of lipase immobilized on the amphiphilic particles synthesized in the presence of n‐decane was 3.85 times that of the lipase immobilized on the amphiphilic particles synthesized in the absence of a solvent. The immobilized lipase prepared with the amphiphilic particles synthesized in the presence of n‐decane exhibited a high transesterification activity in n‐hexane and could be used repeatedly without a considerable activity loss. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 874–884, 2002; DOI 10.1002/pola.10178  相似文献   

14.
The lipase from Penicillium expansum PED-03 (PEL) was immobilized onto modified ultrastable-Y (USY) molecular sieve and the resolution of (R, S)-2-octanol was carried out in a bioreactor in nonaqueous media by the immobilized lipase. It was found that the conversion rate, enantiomeric excess (ee) value, and enantioselectivity (E) value of the resolution catalyzed by PEL immobilized on modified USY molecular sieve were much higher than those of the reaction catalyzed by free PEL and PEL immobilized on other supports. Immobilized on modified USY molecular sieve, the PEL exhibited obvious activity within a wider pH range and at a much higher temperature and showed a markedly enhanced stability against thermal inactivation, by which the suitable pH of the buffer used for immobilization could be “memorized.” The conversion rate of the reaction catalyzed by PEL immobilized on modified USY molecular sieve reached 48.84%, with excellent enantio-selectivity (avarege E value of eight batches >460) in nonaqueous media at “memorial” pH 9.5, 50°C for 24 h, demonstrating a good application potential in the production of optically pure (R, S)-2-octanol.  相似文献   

15.
Microorganisms producing lipase were isolated from soil and sewage samples and screened for enantioselective resolution of (R,S)-methyl mandelate to (R)-mandelic acid. A strain designated as GXU56 was obtained and identified as Burkholderia sp. Preparing immobilized GXU56 lipase by simple adsorption on octyl sepharose CL-4B, the optimum temperature was shifted from 40 °C (free lipase) to 50 °C (immobilized lipase), and the optimum pH was shifted from 8.0 (free lipase) to 7.2 (immobilized lipase). The immobilized enzyme displayed excellent stability in the pH range of 5.0–8.0, at the temperatures below 50 °C and in organic solvents compared with free enzyme. Enantioselectivity ratio for (R)-mandelic acid (E) was dramatically improved from 29.2 to more than 300 by applying immobilized lipase in the resolution of (R,S)-methyl mandelate. After five cycles of use of immobilized lipase, conversion and enantiomeric excess of (R)-mandelic acid were 34.5% and 98.5%, respectively, with enantioselectivity ratio for (R)-mandelic acid (E) of 230. Thus, octyl-sepharose-immobilized GXU56 lipase can be used as a bio-resolution reagent for producing (R)-mandelic acid.  相似文献   

16.
用悬浮聚合法合成了一系列聚甲基丙烯酸羟乙酯载体,考察了它们固定化酵母脂肪酶活力与载体的交联度和致孔剂用量之间的关系。研究了这些固定化酵母脂肪酶在有机溶剂中催化酯合成反应的活性。脂肪酶的固定化使之活力表达更为充分,对亲水性较强的有机溶剂有更强的耐受性,并能为其在有机溶剂中催化酯合成反应提供必需水。考察了pH值,底物种类对固定化酵母脂肪酶催化酯合成反应的影响。  相似文献   

17.
Taking advantage of the virtue of hydrophilic surface, lipase was firstly immobilized on SBA-15 as a support. Then the surface of the SBA-15 with enzyme entrapped inside the channels was modified by grafting with organic moieties. It has been found that the silylation with n-decyltrimethoxysilane (DE) and 3-(trimethoxysilyl)propyl methacrylate (MA) following the lipase immobilization increases the surface hydrophobicity. But the surface modified by MA shows more hydrophilicity than that modified by DE. The activity assay indicates that the hydrolytic activity for the hydrolysis of insoluble or partly soluble substrates increases with enhanced surface hydrophobicity.  相似文献   

18.
The values of the second dissociation constant, pK 2, for the dissociation of the NH+ charge center of the zwitterionic buffer compounds 4-(N-morpholino)butanesulfonic acid (MOBS), and N-(2-hydroxyethyl)piperazine-N-4-butanesulfonic acid (HEPBS) have been determined from 5 to 55°C, including, 37°C at intervals of 5°C. The electromotive-force (emf) measurements have been made utilizing hydrogen electrodes and silver–silver chloride electrodes. The value of pK 2 for MOBS was found to be 7.702 ± 0.0005, and 8.284 ± 0.0004 for HEPBS, at 25°C, respectively. The related thermodynamic quantities, G o, H o, S o, and C p o for the dissociation processes of MOBS and HEPBS have been derived from the temperature coefficients of pK 2. Both the MOBS and HEPBS buffer materials are useful as primary pH standards for the control of pH 7.3 to 8.6 in the region close to that of physiological fluids.  相似文献   

19.
Copolymers of N-vinylcarbazole and N-vinylamides are synthesized by free-radical copolymerization. It is shown that the copolymers of N-vinylpyrrolidone and N-vinylcaprolactam containing 12–21 mol % N-vinylcarbazole units, when dispersed in a poly(methyl methacrylate) matrix, enhance the intensity of luminescence of terbium ions by two orders of magnitude relative to the intensity of luminescence observed in the presence of copolymers with a higher content of N-vinylcarbazole units. This effect is presumably related to the competition of two photophysical processes, excimer formation and electron-excitation energy transfer, occurring in opposite directions.  相似文献   

20.
Lipase immobilization offers unique advantages in terms of better process control, enhanced stability, predictable decay rates and improved economics. This work evaluated the immobilization of a highly active Yarrowia lipolytica lipase (YLL) by physical adsorption and covalent attachment. The enzyme was adsorbed on octyl–agarose and octadecyl–sepabeads supports by hydrophobic adsorption at low ionic strength and on MANAE–agarose support by ionic adsorption. CNBr–agarose was used as support for the covalent attachment immobilization. Immobilization yields of 71, 90 and 97% were obtained when Y. lipolytica lipase was immobilized into octyl–agarose, octadecyl–sepabeads and MANAE–agarose, respectively. However, the activity retention was lower (34% for octyl–agarose, 50% for octadecyl–sepabeads and 61% for MANAE–agarose), indicating that the immobilized lipase lost activity during immobilization procedures. Furthermore, immobilization by covalent attachment led to complete enzyme inactivation. Thermal deactivation was studied at a temperature range from 25 to 45°C and pH varying from 5.0 to 9.0 and revealed that the hydrophobic adsorption on octadecyl–sepabeads produced an appreciable stabilization of the biocatalyst. The octadecyl–sepabeads biocatalyst was almost tenfold more stable than free lipase, and its thermal deactivation profile was also modified. On the other hand, the Y. lipolytica lipase immobilized on octyl–agarose and MANAE–agarose supports presented low stability, even less than the free enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号