首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel, functionalized octahydrochromane derivatives were synthesized in a single step via the Prins reaction. Enantiomerically pure (+)-isopulegol was reacted with benzaldehyde to stereoselectively yield the corresponding octahydro-2H-chromen-4-ol derivative containing five stereocenters. A total of 10 compounds were synthesized by altering the enantiomer of isopulegol and the substituted benzaldehyde, and the resulting enantiopure octahydrochromanes were screened in vitro against the cannabinoid receptor isoforms CB1 and CB2. Compounds containing an olefin at the C4 position [(+)-3c, (?)-3c, (?)-7c, (?)-9c and (?)-11c] of the octahydrochromane scaffold were found to exhibit reasonable displacement of [3H] CP55,940 from the CB receptors, whereas the corresponding hydroxy analogs [(+)-3a, (+)-3b, (?)-3a, (?)-3b and (+)-5a] had very little or no effect.  相似文献   

2.
《Tetrahedron: Asymmetry》2001,12(5):745-753
The stereospecific synthesis of diaryl(acylamino)(acyloxy)spiro-λ4-sulfanes (S)-(+)-2, (R)-(+)-5, (S)-(+)-8, and their conversion into related diaryl(acylamino)sulfonium tetrafluoroborates (R)-(+)-3, (S)-(+)-6, (R)-(+)-9, respectively, is described. The enantiomers of spiro-λ4-sulfanes (S)-(+)-2, (R)-(+)-5 and (S)-(+)-8 were prepared by dehydration of the corresponding optically active sulfoxide–carboxylic acids (R)-(+)-1, (R)-(−)-4 and (S)-(+)-7, respectively, which were obtained from the racemic forms by diastereoisomeric salt separation with homochiral organic bases. The stereomechanism of the hydrolysis reaction of spiro-λ4-sulfanes and sulfonium tetrafluoroborates that depends on pH, the nature of the axial heteroatom, the size of the spiro rings and carboxyl neighbouring group participation is also discussed.  相似文献   

3.
3,6-Dimethyl-1-phenyl-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one 3 was prepared by an intramolecular cyclization of N-(4-cyano-3-methyl-1-phenyl-1H-pyrazol-5-yl) acetamide 2 in ethanol in the presence of piperidine. N-allylation and N-propargyl alkylation of N-substituted pyrazolo[3,4-d] pyrimidin-4(5H)-one 3 yielded the corresponding dipolarophiles 4 and 5 which afford by condensation with arylnitrile oxides in toluene the expected new isoxazolines 6 and isoxazoles 7, respectively. On the other hand, the aminopyrazole 1 in refluxing with ethanol in the presence of sodium hydroxide afforded the corresponding carboxamide 8, which then, was converted to its ethyl 3-methyl-4-oxo-1-phenyl-4,5-dihydro-1H-pyrazolo[3,4-d] pyrimidine-6-carboxylate 9 with neat diethyl oxalate. The dipolarophile 10 on regiospecific 1,3-dipolar cycloaddition with arylnitrile oxides affords isoxazoles 11 and the unexpected deethoxycarbonylated isoxazoles 12. The target compounds were completely characterized by 1H NMR, 13C NMR, IR and HRMS.  相似文献   

4.
1,3-Dithiane-1-N-p-chlorophenylimides (1,4-9) were prepared and their configuration and conformation was determined by 1H and 13C NMR. The compounds were rearranged to the corresponding 2-(2'-amino-5'-chlorophenyl)-1, 3-dithianes (1U,4U,9U). The rearrangement reactions took place with ?95% stereospecifity. The mechanism of the reaction was investigated with the aid of analogs specifically deuterated at C-2.  相似文献   

5.
The imidazolium salts 1,1′-dibenzyl-3,3′-propylenediimidazolium dichloride and 1,1′-bis(1-naphthalenemethyl)-3,3′-propylenediimidazolium dichloride have been synthesized and transformed into the corresponding bis(NHC) ligands 1,1′-dibenzyl-3,3′-propylenediimidazol-2-ylidene (L1) and 1,1′-bis(1-naphthalenemethyl)-3,3′-propylenediimidazol-2-ylidene (L2) that have been employed to stabilize the PdII complexes PdCl22-C,C-L1) (2a) and PdCl22-C,C-L2) (2b). Both latter complexes together with their known homologous counterparts PdCl22-C,C-L3) (1a) (L3 = 1,1′-dibenzyl-3,3′-ethylenediimidazol-2-ylidene) and PdCl22-C,C-L4) (1b) (L4 = 1,1′-bis(1-naphthalenemethyl)-3,3′-ethylenediimidazol-2-ylidene) have been straightforwardly converted into the corresponding palladium acetate compounds Pd(κ1-O-OAc)22-C,C-L3) (3a) (OAc = acetate), Pd(κ1-O-OAc)22-C,C-L4) (3b), Pd(κ1-O-OAc)22-C,C-L1) (4a), and Pd(κ1-O-OAc)22-C,C-L2) (4b). In addition, the phosphanyl-NHC-modified palladium acetate complex Pd(κ1-O-OAc)22-P,C-L5) (6) (L5 = 1-((2-diphenylphosphanyl)methylphenyl)-3-methyl-imidazol-2-ylidene) has been synthesized from corresponding palladium iodide complex PdI22-P,C-L5) (5). The reaction of the former complex with p-toluenesulfonic acid (p-TsOH) gave the corresponding bis-tosylate complex Pd(OTs)22-P,C-L5) (7). All new complexes have been characterized by multinuclear NMR spectroscopy and elemental analyses. In addition the solid-state structures of 1b·DMF, 2b·2DMF, 3a, 3b·DMF, 4a, 4b, and 6·CHCl3·2H2O have been determined by single crystal X-ray structure analyses. The palladium acetate complexes 3a/b, 4a/b, and 6 have been employed to catalyze the oxidative homocoupling reaction of terminal alkynes in acetonitrile chemoselectively yielding the corresponding 1,4-di-substituted 1,3-diyne in the presence of p-benzoquinone (BQ). The highest catalytic activity in the presence of BQ has been obtained with 6, while within the series of palladium-bis(NHC) complexes, 4b, featured with a n-propylene-bridge and the bulky N-1-naphthalenemethyl substituents, revealed as the most active compound. Hence, this latter precursor has been employed for analogous coupling reaction carried out in the presence of air pressure instead of BQ, yielding lower substrate conversion when compared to reaction performed in the presence of BQ. The important role of the ancillary ligand acetate in the course of the catalytic coupling reaction has been proved by variable-temperature NMR studies carried out with 6 and 7′ under catalytic reaction conditions.  相似文献   

6.
Four novel isomers of norlignan glycoside were isolated from Cephalotaxus oliveri Mast.. Their structures were elucidated as 3S-4″-O-β-d-glucopyranosylnyasol 1, 3S-4′-O-β-d-glucopyranosylnyasol 2, 3S-4″-O-β-d-glucopyranosylhinokiresinol 3, 3S-4′-O-β-d-glucopyranosylhinokiresinol 4 by extensive spectroscopic methods including 1D and 2D NMR experiments (1H, 13C, DEPT, 1H–1H COSY, HSQC, HMBC, ROESY) along with HR-ESIMS and comparison to literature data. Their absolute configurations were elucidated through CD spectra coupled with the quantum chemical CD calculations.  相似文献   

7.
α-Alkynyl-α-ethoxycarbonyl cyclopentanones 1a-c and cyclohexanones 2a-c were readily synthesized by the reaction of ethyl 2-oxocyclopentanonecarboxylate 6 and ethyl 2-oxocyclohexanonecarboxylate 7 with alkynyllead triacetates 5a-c obtained from lithium acetylides 4a-c and lead tetraacetate. Treatment of 1a-c and 2a-c with 1 N KOH in THF or with n-Bu4N+OEt in EtOH and THF gave the corresponding conjugated allenyl esters 8a-c, 9a-c, 10a-c, and 11a-c in good to excellent yields, respectively.  相似文献   

8.
Hydrogen-transfer reduction processes are attracting increasing interest from synthetic chemists in view of their operational simplicity. The new chiral C2-symmetric ligands N,N′-bis-[(1S)-1-sec-butyl-2-O-(diphenylphosphinite)ethyl]ethanediamide, 1 and N,N′-bis-[(1S)-1-phenyl-2-O-(diphenylphosphinite)ethyl]ethanediamide, 2 and the corresponding ruthenium complexes 3 and 4 have been prepared and their structures have been elucidated by a combination of multi-nuclear NMR spectroscopy, IR spectroscopy, and elemental analysis. 1H–31P NMR, DEPT, 1H–13C HETCOR, or 1H–1H COSY correlation experiments were used to confirm the spectral assignments. The catalytic activity of complexes 3 and 4 in transfer hydrogenation of acetophenone derivatives by iso-PrOH has also been studied. Under optimized conditions, these chiral ruthenium complexes serve as catalyst precursors for the asymmetric transfer hydrogenation of acetophenone derivatives in iso-PrOH and act as excellent catalysts, giving the corresponding chiral alcohols in 99% yield and up to 75% ee. This transfer hydrogenation is characterized by low reversibility under these conditions.  相似文献   

9.
The development of an efficient chemoenzymatic route for the synthesis of optically active dihydroxy cyclopenta[b]naphthalenones; (+)-1,4a-dihydroxy-4a,5,6,7,8,8a,9,9a-octahydro-1H-cyclopenta[b]naphthalen-2(4H)-one (+)-10 and (+)-1,8a-dihydroxy-4a,5,6,7,8,8a,9,9a-octahydro-1H-cyclopenta[b]naphthalen-2(4H)-one (+)-11 is described. Different lipases and esterases were tested in the enzymatic hydrolysis of the corresponding acetates (±)-4a-hydroxy-2-oxo-2,4,4a,5,6,7,8,8a,9,9a-decahydro-1H-cyclopenta[b]naphthalen-1-yl acetate (±)-8, (±)-8a-hydroxy-2-oxo-2,4,4a,5,6,7,8,8a,9,9a-decahydro-1H-cyclopenta[b]naphthalen-1-yl acetate (±)-9, CRL (Candida Rugosa Lipase) and PLE (Pig Liver Esterase) were found to be the most effectual enzymes; for (?)-8 by 47% ee with the corresponding dihydroxy; (+)-10 by 98% ee in the presence of CRL; whereas, (?)-8 was obtained with 40% ee with the corresponding dihydroxy, (+)-10 with 58% ee in the PLE hydrolysis. It was concluded that CRL was the best biocatalyst for the substrate (±)-8. Moreover, enzymatic resolution in the presence of CRL yields, (?)-9 with 46% ee with the corresponding dihydroxy derivative; (+)-11 with 98% ee; however, in the presence of PLE, yields (?)-9 with 36% ee as well as the related dihydroxy derivative; (+)-11 with 49% ee respectively. The study concluded that CRL is the best biocatalyst for compounds (±)-8 and (±)-9.  相似文献   

10.
《Tetrahedron: Asymmetry》2000,11(13):2765-2779
The ligands 6-[(diphenylphosphanyl)methoxy]-4,8-di-tert-butyl-2,10-dimethoxy-5,7-dioxa-6-phosphadibenzo[a,c]cycloheptene, 1, (S)-4-[(diphenylphosphanyl)methoxy]-3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4a′]dinaphthalene, (S)-2, and (S)-4-[(diphenylphosphanyl)methoxy]-2,6-bis-trimethylsilanyl-3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-a′]dinaphthalene, (S)-3, (S)-2-(3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-a′]dinaphthalen-4-yloxymethyl)pyridine, (S)-4, and (S)-2-(3,5-dioxa-4-phosphacyclohepta[2,1-a;3,4-a′]dinaphthalen-4-yloxy)pyridine, (S)-5, have been easily prepared.The cationic complexes [Pd(η3-C3H5)(L-L′)]CF3SO3 (L–L′=1–(S)-5) and [Pd(η3-PhCHCHCHPh)(L–L′)]CF3SO3 (L–L′=(S)-2–(S)-4) were synthesized by conventional methods starting from the complexes [Pd(η3-C3H5)Cl]2 and [Pd(η3-PhCHCHCHPh)Cl]2, respectively. The behavior in solution of all the π-allyl- and π-phenylallyl-(L–L′)palladium derivatives 614 was studied by 1H, 31P{1H}, 13C{1H} NMR and 2D-NOESY spectroscopy. As concerns the ligands (S)-4 and (S)-5, a satisfactory analysis of the structures in solution was possible only for palladium–allyl complexes [Pd(η3-C3H5)((S)-4)]CF3SO3, 11, and [Pd(η3-C3H5)((S)-5)]CF3SO3, 12, since the corresponding species [Pd(η3-PhCHCHCHPh)((S)-4)]CF3SO3, 13, and [Pd(η3-PhCHCHCHPh)((S)-5)]CF3SO3, 14, revealed low stability in solution for a long time. The new ligands (S)-2–(S)-5 were tested in the palladium-catalyzed enantioselective substitution of (1,3-diphenyl-1,2-propenyl)acetate by dimethylmalonate. The precatalyst [Pd(η3-C3H5)((S)-2)]CF3SO3 afforded the allyl substituted product in good yield (95%) and acceptable enantioselectivities (71% e.e. in the S form). A similar result was achieved with the precatalyst [Pd(η3-C3H5)((S)-3)]CF3SO3. The nucleophilic attack of the malonate occurred preferentially at allylic carbon far from the binaphthalene moiety, namely trans to the phosphite group. When the complexes containing ligands (S)-4 and (S)-5 were used as precatalysts, the product was obtained as a racemic mixture in high yield. The number of the configurational isomers of the Pd-allyl intermediates present in solution in the allylic alkylation and the relative concentrations are considered a determining factor for the enantioselectivity of the process.  相似文献   

11.
Twelve OCO bisacetamide ligands 4aa-4dc were synthesized after condensation of isophenylenediamines 1a-1d and anhydride/acyl chlorides. The corresponding Pd(II)–OCO–H(5aa-5ac), Pd(II)–OCO–Me(5ba-5bc), Pd(II)–OCO–OMe(5ca-5?cc), Pd(II)–OCO–NO2(5da-5dc) pincer complexes were prepared via C-H activation of precursors and Pd(OAc)2, and characterized by IR, 1H NMR, 13C NMR and elemental analysis. The α-arylation of ketones and aryl bromides catalyzed by 5 under low catalyst loadings (0.1?mol%) show that 5da exhibits the highest catalytic activity, resulting in a 98% isolated yield.  相似文献   

12.
《Tetrahedron: Asymmetry》1998,9(12):2181-2192
The hydrazine (R)-(−)-28 was obtained in four steps from 2-aminobutan-1-ol (R)-(−)-11, and reacted with benzaldehyde to give the hydrazone (R)-(−)-29. Nucleophilic addition of various alkyl Grignard reagents to the latter yielded the corresponding trisubstituted hydrazines (R,R)-30ag in 70–89% yields and having d.e.s=100% (1H and 13C NMR). Catalytic hydrogenolysis of these hydrazines afforded the corresponding (R)-(+)-α-phenylalkanamines (R)-(+)-31ag having e.e.s=90–92% (chiral GPC).  相似文献   

13.
A series of benzyloxybenzaldehyde derivatives (1-4) were synthesized by the reactions of 4-(bromomethyl)benzonitrile with 4-hydroxy-3-methoxybenzaldehyde (vanillin), 2-hydroxy-3-methoxybenzaldehyde (o-vanillin), 2-hydroxy-4-methoxybenzaldehyde and 2-hydroxy-5-methoxybenzaldehyde. Condensation reactions among the new benzyloxybenzaldehyde derivatives (1-4) with 4′-aminobenzo-15-crown-5 yielded the new Schiff base compounds (5-8). Sodium complexes (5a-8a) and potassium complexes (5b-8b) were prepared with NaClO4 and KI, respectively. All of these synthesized compounds were characterized on the basis of FT-IR, 1H and 13C NMR, mass spectrometry and elemental analyses data. The solid state structures of compounds 8 and 5a were determined by X-ray crystallography. The extraction abilities of compounds 5-8 were also evaluated in CH2Cl2 by using several main group and transition metal picrates, such as Na+, K+, Pb2+, Cr3+, Ni2+, Cu2+ and Zn2+.  相似文献   

14.
First examples of tungsten aminocarbene complexes [(OC5)W{C(SiR1nR23-n)NH2}] 2a-d (R1 = Ph, R2 = Me) were synthesized via ammonolysis of the corresponding methoxycarbene complexes 1a-d. They were characterized by NMR spectroscopy, MS, IR, UV/Vis and elemental analysis, and in the case of the C-triphenylsilyl derivative 2a by single-crystal X-ray structure analysis. The reaction of P-chloro alkylidenephosphane 3 with complexes 2a-d, meant to give 2H-azaphosphirene complexes, was monitored by 31P NMR spectroscopy to reveal the formation of the products 4-7, which were presumably formed via decomposition of the transient complexes 10a-d.  相似文献   

15.
The preparation and characterization of the ammonium hexafluorosilicate salts, 2[R]+ [SiF6]2− (where R=piperidinium (2), methylammonium (3), quinolinium (4), acridinium (5), 2,2,6,6-tetramethylpiperidinium (6), and propylammonium (7)) is described.The salts were prepared from the reaction of the corresponding alkylammonium fluoride with silica gel. The compounds were characterized by NMR, IR, mass spectrometry and in the case of 1 (piperidinium fluoride), 2-4 by X-ray crystallography. Compounds 1-3 crystallize in the orthorhombic crystal system (space groups Iba2, Fdd2, and Pnnm, respectively), with Z=8, 14, and 4, respectively. Compound 4 crystallizes in the triclinic space group P-1, with Z=2. Compounds 1-4 exhibit hydrogen bonding.  相似文献   

16.
Baya Toumi 《Tetrahedron letters》2006,47(37):6685-6687
A regiospecific 1,3-dipolar cycloaddition of 2-diazopropane 3 to iminoethers 1a-c, carried out at 0 °C, afforded in two steps the corresponding 4-aryl-5,5-dimethyl-5H-1,2,3-triazoles 5a-c. Under the same conditions, 3-arylpropenenitriles 2a-d led to 3-cyano-5,5-dimethyl Δ1-pyrazolines 6a-d. Products 4-6 were obtained in good yields (69-85%).  相似文献   

17.
Shin-ichi Naya 《Tetrahedron》2005,61(21):4919-4930
Novel photo-induced oxidative cyclization was accomplished to synthesize areno[b]pyrimido[5,4-e]pyran-2,4(1,3H)-dionylium ions 13a-c+·ClO4. Furthermore, 13a-c+·BF4 and their phenyl-substituted derivatives 19a,b+·BF4 were alternatively synthesized by the reaction of salicylaldehyde and its naphthyl derivatives with barbituric acids and subsequent treatment with aq. HBF4. Structural characteristics of 13a-c+ and 19a,b+ were clarified on inspection of the UV-vis and NMR spectral data as well as X-ray crystal analyses. The electrochemical properties were studied by the CV measurement. In a search for reactivity, reactions of 13a-c+·BF4 with some nucleophiles, hydride, benzylamine, and H2O, were also carried out. The photo-induced autorecycling oxidation reactions of 13a-c+·BF4 toward some amines under aerobic conditions were carried out to give the corresponding imines (isolated by converting to the corresponding 2,4-dinitrophenylhydrazones) in 643-3600% yield (recycling number of 13a-c+·BF4: 6.4-36.0).  相似文献   

18.
A series of aluminum and zinc complexes supported by functionalized phenolate ligands were synthesized and characterized. Reaction of 2-(3,5-R2C3N2)C6H4NH2 (R = Me, Ph) with salicylaldehyde or 3,5-di-tert-butylsalicylaldehyde afforded 2-((2-(1H-pyrazol-1-yl)phenylimino)methyl)phenol derivatives 2a-2d. Treatment of 2a-2d with an equiv. of AlR23 (R2 = Me, Et) gave corresponding aluminum aryloxides 3a-3e, while reaction with an equiv. of ZnEt2 afforded zinc aryloxides 4a-4d. Treatment of 2c with 0.5 equiv. of ZnEt2 formed diphenolato zinc complex 5. All new compounds were characterized by 1H and 13C NMR spectroscopy and elemental analyses. The structures of complexes 3a, 4a and 5 were further characterized by single crystal X-ray diffraction techniques. The catalytic activity of complexes 3-5 toward the ring-opening polymerization of ε-caprolactone was studied. The zinc complexes (4a-4d) exhibited higher catalytic activity than the aluminum complexes (3a-3e). The diphenolato zinc complex 5 showed lower catalytic activity than the ethylzinc complexes 4a-4d. The aluminum complex (3b) is inactive to initiate the ROP of rac-lactide, while the zinc complex (4d) is active initiator for the ROP of rac-lactide, giving atactic polylactide.  相似文献   

19.
A series of soluble quaterthiophenes (4Ta-g) bearing ester groups in the α,ω-terminal positions separated from the quaterthiophene core by ethylene (4Ta-c), vinylene (4Td-f) or ethynylene (4Tg) spacers was synthesized by means of a Pd-catalyzed homocoupling of bithiophenes proceeding via C-H bond activation. The synthetic approach gave satisfying yields of 4Ta-f but resulted in only 3% yield of 4Tg due to the competitive hydrofluorination of the triple bond. The quaterthiophenes 4Ta-g were characterized by NMR, FTIR, UV-vis, PL spectroscopies, HRMS, TGA and CV. Thin-films of 4Ta-g were deposited either by spin-coating or by thermal evaporation on Si/SiO2 for the fabrication of top-contact OTFTs. The devices prepared using 4Ta-c bearing the ester functional group separated from the quaterthiophene core by an ethylene spacer showed average hole field-effect mobility up to 2.7×10−3 cm2 V−1 s−1 and up to 6×10−3 cm2 V−1 s−1 for solution processed and for thermally evaporated OTFTs, respectively. The remarkably high solubility of 4Ta-c, along with their respectable performances in OTFTs render these molecules promising for practical applications as active layers in chemically-sensitive devices.  相似文献   

20.
The interaction of optically pure 1R,2R-diammoniumyclohexane mono-(+)-tartrate and 1S,2S-diammoniumcyclohexane mono-(−)-tartrate with 2 equiv. of o-(diphenylphosphino)benzaldehyde in the presence of 2 equiv. of potassium carbonate in a refluxing ethanol/water mixture gave the optically pure condensation products N,N′-bis[o-(diphenylphosphino)benzylidene]-1R,2R-diiminocyclohexane[1R,2R-cyclohexyl-P2N2, (R,R)-I] and N,N′-bis[o-(diphenylphosphino)benzylidene]-1S,2S-diiminocyclohexane [1S,2S-cyclohexyl-P2N2, (S,S)-I], respectively, in good yield. Reduction of optically pure (R,R)-I and (S,S)-I with NaBH4 in ethanol gave the optically pure reduced products N,N′-bis[o-(diphenylphosphino)benzylidene]-1R,2R-diaminocyclohexane[1R,2R-cyclohexyl-P2N2H4, (R,R)-II] and N,N′-bis[o-diphenylphosphine)benzylidene]-1S,2S-diaminocyclohexane[1S,2S-cyclohexyl-P2N2H4, (S,S)-II], respectively, in good yield. The coordination behaviour of I and II toward salts of CuI and AgI have been examined. The interaction of [Cu(C)3CN)4][X] (X = ClO4, PF6) with 1 equiv. of optically pure L4 [L4 = (R,R)-I, (S,S)-I, (R,R)-II and (S,S)-II] gave the corresponding optically pure [CuL4][X] complexes, III–VI IIIa, L4 = (R,R)-I, X = PF6 IIIb, L4 = (R,R)-I, X = ClO4 IV, X = PF6; Va, L4 = (R,R)-II, X = PF6, Vb L4 = (R,R)-II, X= ClO4, VI L4 = (S,S)-II, X = PF6, in good yield. For the CuI complexes, the L4 ligand acted as a tetradentate ligand. However, a variable-temperature 31P[1H] NMR study of IIIb shows that at ambient temperature one of the imino groups of the tetradentate ligand undergoes rapid dissociation to form a tridentate ligand. The interaction of AgBF4 with 1 equiv. of otpically pure L4 [L4 = (R,R)-I, (S,S)-I, (R,R)-II and (S,S)-II gave the corresponding optically pure [AgL4][BF4] complexes, VII–X VII L4 = (R,R)-I; VIII, L4 = (S,S)-I; IX,L4 = (R,R)-II; X, L4 = (S,S)-II], in good yield. For the AgI complexes, the L4 ligand acted as a tetradentate ligand with the two amino groups coordinated unsymmetrically to the silver. A variable temperature 31P [1H] NMR study of VII suggests that at high temperature the complex exists as a tri-coordinated complex. The structurers of IV and IX were established by X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号