首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This article presents the experimental data of and , obtained at T = 298.15 K and atmospheric pressure, for four binary systems composed of 1,2-dichloropropane (1,2-DCP) and four 2-alkoxyethanols. The 2-alkoxyethanols are 2-methoxyethanol (2-ME), 2-ethoxyethanol (2-EE), 2-propoxyethanol (2-PE) and 2-butoxyethanol (2-BE). The of the mixture has been shown positive for 2-ME, ‘s-shaped’ for all remaining systems, being negative at low and positive at high mole fraction of 1,2-DCP. The values for all binary mixtures are also shown both positive at low and negative at high mole fraction of 1,2-DCP. The experimental results of and were fitted to Redlich–Kister equation to correlate the composition dependence of both excess properties. In this work, data were also used to test the suitability of thermodynamic models (Wilson, NRTL, and UNIQUAC equations) based on local-composition theory. The results have been qualitatively discussed in terms of the polarity, self-association, and hydrogen bond among molecules.  相似文献   

3.
The molar excess enthalpies of 1,2- and 1,3-propanediamine + 1- or 2-propanol and 1,2- and 1,3-propanediol + 1- or 2-propaneamine have been determined at 298.15 K using a twin-microcalorimeter for a series of runs over the whole range of mole fractions. All excess enthalpies were large exothermic, in particular, the systems of amines + propanediols were more than −5 kJ mol−1 at the minimum. Primary or secondary alcohols and amines showed systematically different enthalpic behaviors. Equilibrium constant K1 expressed in terms of mole fractions and standard enthalpy of the formation of a 1:1 complex have been evaluated by ideal mixtures of momomeric molecules and their associated complexes.  相似文献   

4.
Excess molar volumes (V m E ) and viscosities (η) of the binary mixtures of 1,2-diethoxyethane with di-, tri- and tetrachloromethane have been measured at 298-15 K and atmospheric pressure over the entire mole fraction range. The deviations in viscosities (δlnη) and excess energies of activation (δG*E) for viscous flow have been calculated from the experimental data. The Prigogine-Flory-Patterson (PFP) model has been used to calculateV m E , and the results have been compared with experimental data. The Bloomfield and Dewan model has been used to calculate viscosity coefficients and these have also been compared with experimental data for the three mixtures. The results have been discussed in terms of dipole-dipole interactions between 1,2-diethoxyethane and chloroalkanes and their magnitudes decreasing with the dipole character of the molecules. A short comparative study with results for mixtures with polyethers and chloroalkanes is also described.  相似文献   

5.
We have determined the excess molar enthalpies H m E at 298.15 K and normal atmospheric pressure for the binary mixtures containing tert-butyl methyl ether (MTBE)+(methanol, ethanol, 1-propanol, 1-pentanol) using a Calvet microcalorimeter. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
This review covers recent developments in the area of excess molar volumes for mixtures of {ILs (1) + H2O (2)} where ILs refers to ionic liquids involving cations: imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium and ammonium groups; and anions: tetraborate, triflate, hydrogensulphate, methylsulphate, ethylsulphate, thiocyanate, dicyanamide, octanate, acetate, nitrate, chloride, bromide, and iodine. The excess molar volumes of aqueous ILs were found to cover a wide range of values for the different ILs (ranging from −1.7 cm3 · mol−1 to 1.2 cm3 · mol−1). The excess molar volumes increased with increasing temperature for all systems studied in this review. The magnitude and in some cases the sign of the excess molar volumes for all the aqueous ILs mixtures, apart from the ammonium ILs, were very dependent on temperature. This was particularly important in the dilute IL concentration region. It was found that the sign and magnitude of the excess molar volumes of aqueous ILs (for ILs with hydrophobic cations), was more dependent on the nature of the anion than on the cation.  相似文献   

7.
Excess molar enthalpies, HE for the binary systems formamide+methanol, + ethanol, + propan-1-ol, + butan-1-ol, + pentan-1-ol, and + hexan-1-ol have been measured at 298.15 K and atmospheric pressure with a Paar 1455 solution calorimeter. All the system present endothermic events and showed maximum positive HE values around 0.40-0.50 mole fraction of formamide. The HE values increases in the order: methanol<ethanol<propan-1-ol<butan-1-ol<pentan-1-ol<hexan-1-ol. Experimental showed insolubility of hexan-1-ol in formamide around x≅0.5 mole fraction of formamide. The excess enthalpies of the above mentioned binary systems, were used to discuss interaction between the alkan-1-ols and formamide molecules. The results are interpreted to gain insight into the changes in molecular association equilibria and structural effects in these systems through O···HO hydrogen bonding. The experimental data have been correlated using Redlich-Kister polynomials. In this research work, the thermodynamics models were also tested: NRTL, Wilson models and their parameters were calculated. The correlation of excess enthalpy data in the systems using NRTL model provides good results.  相似文献   

8.
A flow-mixing isothermal microcalorimeter was used to measure excess molar enthalpies for four binary systems of {diethyl oxalate + (methanol, + ethanol, + 1-propanol, and + 2-propanol)} at T = (288.2, 298.2, 313.2, and 328.2) K and p = 101.3 kPa. The densities of the diethyl oxalate at different temperature were measured by using a vibrating-tube densimeter. All systems exhibit endothermic behaviour over the whole composition range, which means that the rupture of interactions is energetically the main effect. The excess molar enthalpies increase with temperature and the molecular size of the alcohols. The experimental results were correlated by using the Redlich–Kister equation and two local-composition models (NRTL and UNIQUAC).  相似文献   

9.
The isothermal excess molar enthalpies for binary mixtures of different amines with water were measured with a C-80 Setaram calorimeter. The experimental results indicate that the excess molar enthalpy is related to the molecular structure. The experimental excess molar enthalpies were satisfactorily fitted with the Redlich–Kister equation. They were also used to test the suitability of the NRTL model, and the deviations are a little larger than the R–K equation.  相似文献   

10.
Ternary excess molar enthalpies, HmE, at 298.15 K and atmospheric pressure measured by using a flow microcalorimeter are reported for the (methanol+ethanol+tetrahydropyran) and (methanol+ethanol+1,4-dioxane) mixtures. The pseudobinary excess molar enthalpies for all the systems are found to be positive over the entire range of compositions. The experimental results are correlated with a polynomial equation to estimate the coefficients and standard errors. The results have been compared with those calculated from a UNIQUAC associated solution model in terms of the self-association of alcohols as well as solvation between unlike alcohols and alcohols with tetrahydropyran or 1,4-dioxane. The association constants, solvation constants and optimally fitted binary parameters obtained solely from the pertinent binary correlation predict the ternary excess molar enthalpies with an excellent accuracy.  相似文献   

11.
Excess molar enthalpies of binary mixtures for tributyl phosphate (TBP)+methanol/ethanol were measured with a TAM air Isothermal calorimeter at 298.15 K and ambient. The results for xTBP+(1–x)CH3OH are negative in the whole range of composition, while the values for xTBP+(1–x)C2H5OH change from positive values at low x to small negative values at high x. The experimental results have been correlated with the Redlich–Kister polynomial. IR spectra of the mixtures were measured to investigate the effect of hydrogen bonding in the mixture.  相似文献   

12.
Summary Excess molar volumes (V E) for binary mixtures of 4-methyl-2-pentanone and some hydrocarbons (cyclohexane, benzene, toluene, andp-xylene) over the whole mole fraction range are determined by density measurement at 293.15 K. The variation of theV E values with the composition for all binary systems is symmetrical except for benezene where the dependence is sigmoid. TheV E values are positive for the binary mixture of the ketone with cyclohexane. For the other hydrocarbons, theV E values are progressively negative over the entire mole fraction range except the system containing benzene, where a few values at higher mole fractions of benzene are positive. The results are discussed in terms of molecular interactions steric effects.
Molare Zusatzvolumina von binären Mischungen von 4-Methyl-2-pentanon und einigen Kohlenwasserstoffen
Zusammenfassung Molare Zusatzvolumina (V E) von binären Mischungen von 4-Methyl-2-pentanon und einigen Kohlenwasserstoffen (Cyclohexan, Benzol, Toluol undp-Xylol) wurden bei 293.15 K durch Dichtemessungen über den gesamten Molenbruchbereich bestimmt. Mit Ausnahme der binären Mischung mit Benzol (sigmoide Kurvenform) ist die Änderung vonV E in Abhängigkeit von der Zusammensetzung der Mischungen symmetrisch. Für das System Keton/Cyclohexan sind dieV E-Werte stark positiv, während sie für die anderen Gemische negativ sind. Eine Ausnahme bildet wieder das System mit Benzol als Kohlenwasserstoff, wo einige Werte bei höheren Molenbrüchen von Benzol positiv sind. Die Ergebnisse werden im Zusammenhang mit intermolekularen Wechselwirkungen und dem Einfluß sterischer Faktoren diskutiert.
  相似文献   

13.
The excess molar enthalpies H m E for the binary mixtures of furfural with the aromatic hydrocarbons namely benzene, toluene, ethylbenzene and o-, m-, and p-xylenes were determined at 35°C. The values for all the mixtures studied are positive over the entire range of composition and follow the order: o-xylene>m-xylene>ethylbenzene>p-xylene>benzene>toluene. The results are discussed in terms of the unlike specific interactions present in the binary mixtures.  相似文献   

14.
Given the importance that enthalpic and entropic contributions have in the interplay between thermodynamics and self-assembly of aqueous amphiphile systems, the energetic characterisation of the system {water + 1-propoxypropan-2-ol (1-pp-2-ol)} at T = 298.15 K was made by directly measuring excess partial molar enthalpies of 1-pp-2-ol and water, over the entire composition range, at T = 298.15 K and atmospheric pressure. Derivatives of the partial molar properties with respect to the composition are used to improve the understanding of molecular interactions in the water-rich region. The present results were compared with those for the well-studied system {water + 2-butoxyethanol (nC4E1)}, the two amphiphiles being structural isomers.  相似文献   

15.
Excess molar enthalpies hE at 25 and 35° C and atmospheric pressure, are reported for the binary mixtures formed by a 2-butanone and 2-pentanone with 1-chlorobutane, 1-chloropentane, 1-chlorohexane, or 1-chlorooctane. The hE values for all the mixtures are positive, increasing as the 1-chloroalkane length increases and as the ketone length decreases. Excess molar enthalpies depend slightly on the temperature. The experimental values together with those from the literature were used to calculate the interaction parameters for the Dang-Tassios version of the UNIFAC model.Communicated at the Festsymposium celebrating Dr. Henry V. Kehiaian's 60th birthday, Clermont-Ferrand, France, 17–18 May 1990.  相似文献   

16.
Isothermal vapor–liquid equilibrium data at 333.15 K are reported for the ternary system di-isopropyl ether (DIPE) + n-propyl alcohol + toluene and the binary subsystems DIPE + n-propyl alcohol, DIPE + toluene and n-propyl alcohol + toluene by using headspace gas chromatography. The excess molar volumes at 298.15 K for the same binary and ternary systems were also determined by directly measured densities. The experimental binary and ternary vapor–liquid equilibrium data were correlated with different GE models and the excess molar volumes were correlated with the Redlich–Kister equation for the binary systems and the Cibulka equation for the ternary system, respectively.  相似文献   

17.
Densities, viscosities, and refractive indices of mixing of acetonitrile with 2-propanol, 2-butanol, 2-pentanol, 2-hexanol and 2-heptanol, have been measured as a function of composition at 293.15, 298.15, 303.15 and 308.15 K and ambient pressure. The excess molar volumes, viscosity and refractive index deviations calculated and fitted to Redlich–Kister polynomials. From the experimental data, partial molar volumes, and partial molar volumes at infinite dilution, were also calculated. The latter values are interesting from a theoretical point of view since at infinite dilution the only interactions present are solute solvent interactions. For mixtures of acetonitrile with used 2-alkanols, over the entire range of mole fractions, Δη is negative and both, and ΔnD are positive. The effect of temperature and chain-length of the 2-alkanols on the excess molar volumes, viscosity and refractive index deviations of its mixtures with acetonitrile are discussed in terms of molecular interaction between unlike molecules. The experimental results have been used to test the applicability of the Prigogine–Flory–Patterson (PFP) theory.  相似文献   

18.
Microcalorimetric measurements of excess molar enthalpies, at 298.15 K, are reported for the four binary systems formed by mixing 1-hexene with the cycloalkanes: cyclohexane and methylcyclohexane, and with the aromatic hydrocarcons: benzene and toluene. Smooth Redlich-Kister representations of the results are presented. It was found that the Liebermann-Fried model also provided good representations of the results.  相似文献   

19.
The excess molar volume and excess partial molar volumes of binary mixtures of tri-ethylamine with toluene (Tn), ethylbenzene (Ebz) and n-propylbenzene (n-PBz) have been calculated using the MS-Excel method. The excess molar volumes have been found to be negative throughout the entire range of composition. The temperature effects are found to be insignificant, so the mixtures may be termed regular mixtures of Hildebrand.  相似文献   

20.
《Thermochimica Acta》2003,405(1):147-154
This paper reports measurements on excess thermodynamic properties for the ternary system: butyl butyrate+1-octanol+decane at the temperature 308.15 K and atmospheric pressure.The binary and ternary experimental data were correlated using the Redlich-Kister and Cibulka equation, respectively. Experimental values were compared with the predictions obtained by several contribution models and several empirical equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号