首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper presents the application of the multiple shooting technique to minimax optimal control problems (optimal control problems with Chebyshev performance index). A standard transformation is used to convert the minimax problem into an equivalent optimal control problem with state variable inequality constraints. Using this technique, the highly developed theory on the necessary conditions for state-restricted optimal control problems can be applied advantageously. It is shown that, in general, these necessary conditions lead to a boundary-value problem with switching conditions, which can be treated numerically by a special version of the multiple shooting algorithm. The method is tested on the problem of the optimal heating and cooling of a house. This application shows some typical difficulties arising with minimax optimal control problems, i.e., the estimation of the switching structure which is dependent on the parameters of the problem. This difficulty can be overcome by a careful application of a continuity method. Numerical solutions for the example are presented which demonstrate the efficiency of the method proposed.  相似文献   

2.
The questions of optimization in problems of oscillations in orthotropic shells of revolution of variable thickness are studied for the case when the thickness and radius of curvature of the shell generatrix are used as the controls. Restrictions are imposed on the principal oscillation eigenfrequency, thickness, internal volume and other parameters. It is shown that a solution of the problem exists and, that the problem can be approximated by a sequence of the finite-dimensional problems. Certain questions of the optimal control in the problem concerning the oscillations of plates of variable thickness with the thickness serving as the control, were studied in /1–4/.  相似文献   

3.
In this paper, we prove the existence of solutions for the minimization problem of the shell weight for a given minimal frequency of the shell vibrations as well as for the maximization problem of the minimal frequency for a given shell weight. We consider an optimal control problem governed by an eigenvalue problem for a system of differential equations with variable coefficients. The form of the shell is considered as a control. Some of the coefficients are non-measurable. Earlier, we introduced certain special weighted functional spaces. By using these spaces, we establish the continuity of the considered minimal frequency functional and obtain the existence of solutions of both optimal control problems. At the end, we prove the Lipschitz continuity of the eigenvalue problem.  相似文献   

4.
In this paper, we obtain estimates of the solutions for a sequence of strongly convex extremal problems. As applications of our abstract results, we consider optimal control problems with various types of perturbations. We estimate the solutions of problems with perturbations in the state equation and in the control constraining set. A singularly perturbed problem and a problem with perturbed time delay parameter are studied.  相似文献   

5.
A new dual gradient method is given to solve linearly constrained, strongly convex, separable mathematical programming problems. The dual problem can be decomposed into one-dimensional problems whose solutions can be computed extremely easily. The dual objective function is shown to have a Lipschitz continuous gradient, and therefore a gradient-type algorithm can be used for solving the dual problem. The primal optimal solution can be obtained from the dual optimal solution in a straightforward way. Convergence proofs and computational results are given.  相似文献   

6.
In recent papers, models of human locomotion by means of optimal control problems have been proposed. In this paradigm, the trajectories are assumed to be solutions of an optimal control problem whose cost has to be determined. The purpose of the present paper is to analyze the class of optimal control problems defined in this way. We prove strong convergence results for their solutions, on the one hand, for perturbations of the initial and final points (stability), and, on the other hand, for perturbations of the cost (robustness).  相似文献   

7.
Parametric nonlinear optimal control problems subject to control and state constraints are studied. Two discretization methods are discussed that transcribe optimal control problems into nonlinear programming problems for which SQP-methods provide efficient solution methods. It is shown that SQP-methods can be used also for a check of second-order sufficient conditions and for a postoptimal calculation of adjoint variables. In addition, SQP-methods lead to a robust computation of sensitivity differentials of optimal solutions with respect to perturbation parameters. Numerical sensitivity analysis is the basis for real-time control approximations of perturbed solutions which are obtained by evaluating a first-order Taylor expansion with respect to the parameter. The proposed numerical methods are illustrated by the optimal control of a low-thrust satellite transfer to geosynchronous orbit and a complex control problem from aquanautics. The examples illustrate the robustness, accuracy and efficiency of the proposed numerical algorithms.  相似文献   

8.
We define a new class of optimal control problems and show that this class is the largest one of control problems where every admissible process that satisfies the Extended Pontryaguin Maximum Principle is an optimal solution of nonregular optimal control problems. In this class of problems the local and global minimum coincide. A dual problem is also proposed, which may be seen as a generalization of the Mond–Weir-type dual problem, and it is shown that the 2-invexity notion is a necessary and su?cient condition to establish weak, strong, and converse duality results between a nonregular optimal control problem and its dual problem. We also present an example to illustrate our results.  相似文献   

9.
In this paper, we consider a class of optimal control problems involving a second-order, linear parabolic partial differential equation with Neumann boundary conditions. The time-delayed arguments are assumed to appear in the boundary conditions. A necessary and sufficient condition for optimality is derived, and an iterative method for solving this optimal control problem is proposed. The convergence property of this iterative method is also investigated.On the basis of a finite-element Galerkin's scheme, we convert the original distributed optimal control problem into a sequence of approximate problems involving only lumped-parameter systems. A computational algorithm is then developed for each of these approximate problems. For illustration, a one-dimensional example is solved.  相似文献   

10.
This paper deals with optimal control problems described by higher index DAEs. We introduce a class of problems which can be transformed to index one control problems. For these problems we show in the accompanying paper that, if the solutions to the adjoint equations are well–defined, then the first-order approximations to the functionals defining the problem can be expressed in terms of the adjoint variables. In this paper we show that the solutions to the adjoint equations are essentially bounded measurable functions. Then, based on the first order approximations, we derive the necessary optimality conditions for the considered class of control problems. These conditions do not require the transformation of the DAEs to index-one system; however, higher-index DAEs and their associated adjoint equations have to be solved.  相似文献   

11.
The authors consider the exact controllability of the vibrations of a thin shallow shell, of thickness 2εwith controls imposed on the lateral surface and at the top and bottom of the shell. Apart from proving the existence of exact controls, it is shown that the solutions of the three dimensional exact controllability problems converge, as the thickness of the shell goes to zero, to the solution of an exact controllability problem in two dimensions.  相似文献   

12.
An algorithm for finding agood solution for a multiple criteria optimal control problem is given. The criteria are assumed to be ordered according to their importance to the decision-maker. The algorithm consists of successive solutions of single criterion optimal control problems. Other criteria are taken into account by adding constraints to the problem in a systematic manner.  相似文献   

13.
In this paper, an approach is proposed for solving a nonlinear-quadratic optimal regulator problem with linear static state feedback and infinite planning horizon. For such a problem, approximate problems are introduced and considered, which are obtained by combining a finite-horizon problem with an infinite-horizon linear problem in a certain way. A gradient-flow based algorithm is derived for these approximate problems. It is shown that an optimal solution to the original problem can be found as the limit of a sequence of solutions to the approximate problems. Several important properties are obtained. For illustration, two numerical examples are presented.This project was partially supported by a research grant from the Australian Research Council.  相似文献   

14.
A family of optimization problems in a Hilbert space depending on a vector parameter is considered. It is assumed that the problems have locally isolated local solutions. Both these solutions and the associated Lagrange multipliers are assumed to be locally Lipschitz continuous functions of the parameter. Moreover, the assumption of the type of strong second-order sufficient condition is satisfied.It is shown that the solutions are directionally differentiable functions of the parameter and the directional derivative is characterized. A second-order expansion of the optimal-value function is obtained. The abstract results are applied to state and control constrained optimal control problems for systems described by nonlinear ordinary differential equations with the control appearing linearly.  相似文献   

15.
Problems of the joint optimization of the shape and distribution along the meridian of the thickness of membrane shells of revolution under the action of axisymmetric loads are considered, taking account of the constraints concerning the strength of the shell and the volume of its cavity. General formulations of problems of the optimal design of shells of revolution are given and the optimal shape of a shell and the corresponding thickness distribution are investigated. Results of the exact solution of problems of the optimal design of closed shells of revolution when there is an internal pressure are presented. The simultaneous introduction of two control functions, describing the shape of the shell and the distribution of its thickness, not only ensures a substantial reduction in the mass of a shell but also leads to significant mathematical simplifications, which enable the solution of the optimization problem being considered to be obtained in an analytical form.  相似文献   

16.
In this paper, we identify a new class of stochastic linearconvex optimal control problems, whose solution can be obtained by solving appropriate equivalent deterministic optimal control problems. The term linear-convex is meant to imply that the dynamics is linear and the cost function is convex in the state variables, linear in the control variables, and separable. Moreover, some of the coefficients in the dynamics are allowed to be random and the expectations of the control variables are allowed to be constrained. For any stochastic linear-convex problem, the equivalent deterministic problem is obtained. Furthermore, it is shown that the optimal feedback policy of the stochastic problem is affine in its current state, where the affine transformation depends explicitly on the optimal solution of the equivalent deterministic problem in a simple way. The result is illustrated by its application to a simple stochastic inventory control problem.This research was supported in part by NSERC Grant A4617, by SSHRC Grant 410-83-0888, and by an INRIA Post-Doctoral Fellowship.  相似文献   

17.
An optimal control problem governed by a coupled hyperbolic-paraboliclike dynamics arising in structural acoustic problems isconsidered. The control operator is assumed to be unbounded on thespace of finite energy (for the so-called boundary or pointcontrol problems). A numerical algorithm (based on FEM methods) forcomputations of discrete solutions to Algebraic Riccati Equations(ARE) is formulated.It is shown that the proposed algorithm provides strongly convergentsolutions of the ARE. As the result, the convergence of optimal solutions as well as the associatedperformance index is established.  相似文献   

18.
In this paper important properties of the conjugate points are discussed and illustrated for the problem of optimizing the control of a direct-current electric motor. These properties are shown to have significant implications for the optimization problems.The conjugate point nearest to the initial time determine the maximum duration of an optimal control for this process.In a previous study of this problem the conjugate points were not considered and the obtained trajectories were assumed to be optimal.  相似文献   

19.
While significant progress has been made, analytic research on principal-agent problems that seek closed-form solutions faces limitations due to tractability issues that arise because of the mathematical complexity of the problem. The principal must maximize expected utility subject to the agent’s participation and incentive compatibility constraints. Linearity of performance measures is often assumed and the Linear, Exponential, Normal (LEN) model is often used to deal with this complexity. These assumptions may be too restrictive for researchers to explore the variety of relationships between compensation contracts offered by the principal and the effort of the agent. In this paper we show how to numerically solve principal-agent problems with nonlinear contracts. In our procedure, we deal directly with the agent’s incentive compatibility constraint. We illustrate our solution procedure with numerical examples and use optimization methods to make the problem tractable without using the simplifying assumptions of a LEN model. We also show that using linear contracts to approximate nonlinear contracts leads to solutions that are far from the optimal solutions obtained using nonlinear contracts. A principal-agent problem is a special instance of a bilevel nonlinear programming problem. We show how to solve principal-agent problems by solving bilevel programming problems using the ellipsoid algorithm. The approach we present can give researchers new insights into the relationships between nonlinear compensation schemes and employee effort.  相似文献   

20.
In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号