首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
13C NMR spectroscopy, ab initio quantum mechanics, and molecular mechanics have been used to investigate the trans-4-(trifluoromethyl)-2,2,6-trimethyl-1,3-dioxane chair/twist-boat equilibrium. The molecular mechanics calculations were based upon the MM3 and AMBER force fields. A 6-31G basis set was used for the ab initio calculations, and MP2 correlation corrections were applied. Both the ab initio and AMBER molecular mechanics calculations are consistent with the (13)C NMR chemical shift differences for the trans-4-(trifluoromethyl)-2,2,6-trimethyl-1,3-dioxane conformers. The predicted chair to twist-boat equilibrium suggested by the MM3 calculations is not consistent with the experimental data. These results support the suggestion by Howard et al. (Howard, A. E.; Cieplak, P.; Kollman, P. A. J. Comput.Chem. 1995, 16, 243-261) on the critical role of electrostatic interactions in determining the chair/twist-boat equilibrium.  相似文献   

2.
3.
Ab initio HF and MP2 calculations on prototype model linkages of phosphorothioate DNA backbones illuminate the effects of phosphorothioation on electronic and structural properties of DNA backbone. The replacement of a bridging oxygen atom by sulfur in the phosphodiester linkage is energetically favored over that of replacement of a non-bridging oxygen atom. In phosphorothioate derivatives containing the P(OS)nb moiety, the non-bridging oxygen atom always bears a higher negative charge than the non-bridging sulfur. Additional calculations on protonated (neutral) adducts suggest that phosphorothioation of the phosphodiester linkage lowers its proton affinity. Moreover, protonation of the non-bridging oxygen atom at phosphorous is favored over the protonation of the non-bridging sulfur atom for linkages containing the P(OS)nb moiety. The ab initio calculated structural parameters are compared to the available crystallographic data of small phosphorothioate molecules and phosphorothioate oligodeoxynucleotides. These results have implications upon the biological activity of phosphorothioate DNA analogs.  相似文献   

4.
The dissociative reduction of a series of symmetrical (RSSR, R = H, Me, t-Bu, Ph) and unsymmetrical disulfides (RSSR', R = H, R' = Me and R = Ph, R' = Me, t-Bu) was studied theoretically, by MO ab initio calculations and, for five of them, also experimentally, by convolution voltammetry in N,N-dimethylformamide. The reduction is dissociative but proceeds by a stepwise mechanism entailing the formation of the radical anion species. The electrochemical data led to estimated large intrinsic barriers, in agreement with an unusually large structural modification undergone by the disulfide molecules upon electron transfer. The theoretical results refer to MP2/3-21G*//MP2/3-21G*, MP2/3-21*G*//MP2/3-21G*, CBS-4M, and G2(MP2), the latter approach being used only for the molecules of small molecular complexity. A loose radical-anion intermediate was localized and the dissociation pattern for the relevant bonds analyzed. For all compounds, the best fragmentation pathway in solution is cleavage of the S-S bond. In addition, S-S bond elongation is the major structural modification undergone by the disulfide molecule on its way to the radical anion and eventually to the fragmentation products. The calculated energy of activation for the initial electron transfer was estimated from the crossing of the energy profiles of the neutral molecule and its radical anion (in the form of Morse-like potentials) as a function of the S-S bond length coordinate. The inner intrinsic barrier obtained in this way is in good agreement with that determined by convolution voltammetry, once the solvent effect is taken into account.  相似文献   

5.
We report a comparison of theoretical and experimental proton affinities at nitrogen and oxygen sites within a series of small molecules. The calculated proton affinities are determined using the semiempirical methods AM 1, MNDO , and PM 3; the ab initio Hartree–Fock method at the following basis levels: 3-21G //3-21G , 3-21+G //3-21G , 6-31G *//6-31G *, and 6-31+G (d, p)//6-31G *; and Møller–Plesset perturbation calculations: MP 2/6-31G *//6-31G *, MP 3/6-31G *//6-31G *, MP 2/6-31G +(d, p)//6-31G *, MP 3/6-31G +(d, p)//6-31G *, and MP 4(SDTQ )/6-31G +G (d, p)//6-31G *. The semiempirical methods have more nonsystematic scatter from the experimental values, compared to even the minimal 3-21G level ab initio calculations. The thermodynamically corrected 6-31G *//6-31G * proton affinities provide acceptable results compared to experiment, and we see no significant improvement over 6-31G *//6-31G * in the proton affinities with any of the higher-level calculations. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
The geometries and the static dipole (hyper)polarizabilities (alpha, beta, gamma) of a series of aromatic anions were investigated at the ab initio (HF, MP2, and MP4) and density functional theory DFT (B3LYP) levels of theory. The anions chosen for the present study are the benzenethiolate (Ph-S-), benzenecarboxylate (Ph-CO2-), benzenesulfinate (Ph-SO2-), benzenesulfonate (Ph-SO3-), and 1,3-benzenedicarboxylate (1,3-Ph-(CO2)2(2-)). For benzenethiolate anion, additional alpha, beta, and gamma calculations were performed at the coupled cluster CCSD level with MP2 optimized geometries. The standard diffuse and polarized 6-31+G(d,p) basis set was employed in conjunction to the ab initio and DFT methods. Additional HF calculations were performed with the 6-311++G(3d,3p) basis set for all the anions. The correlated electric properties were evaluated numerically within the formalism of finite field. The optimized geometries were analyzed in terms of the few reports about the phenolate and sulfonate ions. The results show that electron correlation effects on the polarizabilities are very important in all the anion series. Was found that Ph-SO2- is highly polarizable in terms of alpha and beta, and the Ph-S- is the highest second hyperpolarizable in the series. The results of alpha were rationalized in terms of the analysis of the polarization of charge based in Mulliken atomic population and the structural features of the optimized geometries of anions, whereas the large differences in the beta and gamma values in the series were respectively interpreted in terms of the bond length alternation BLA and the separation of charge in the aromatic ring by effects of the substitution. These results allowed us to suggest the benzenesulfinate and benzenethiolate anions as promising candidates that should be incorporated in ionic materials for second and third-order nonlinear optical devices.  相似文献   

7.
A naturally occurring beta-hairpin peptide (PDB ID 1UAO) was used as a model to study the backbone oxidation of a protein with ab initio calculation at the B3LYB/6-31G(d) without any constraints. The (alpha)C--H bond dissociation energy of three different glycyl radicals located at different sites on the beta-hairpin peptide was calculated to evaluate the site specificity of backbone oxidation. The molecular and electronic structures of these glycyl radicals were analyzed to rationalize this site specificity. The overall molecular structure of the alpha-H abstracted beta-hairpin peptide remained almost unchanged with the exception of the local conformation of the attacked residue. However, the (alpha)C--H bond strength varied dramatically among these different sites.  相似文献   

8.
Recent hardware and software advances have enabled simulation studies of protein systems on biophysically-relevant timescales, often revealing the need for improved force fields. Although early force field development was limited by the lack of direct comparisons between simulation and experiment, recent work from several labs has demonstrated direct calculation of NMR observables from protein simulations. Here we quantitatively evaluate recent molecular dynamics force fields against a suite of 524 chemical shift and J coupling ((3)JH(N)H(α), (3)JH(N)C(β), (3)JH(α)C', (3)JH(N)C', and (3)JH(α)N) measurements on dipeptides, tripeptides, tetra-alanine, and ubiquitin. Of the force fields examined (ff96, ff99, ff03, ff03*, ff03w, ff99sb*, ff99sb-ildn, ff99sb-ildn-phi, ff99sb-ildn-nmr, CHARMM27, OPLS-AA), two force fields (ff99sb-ildn-phi, ff99sb-ildn-nmr) combining recent side chain and backbone torsion modifications achieve high accuracy in our benchmark. For the two optimal force fields, the calculation error is comparable to the uncertainty in the experimental comparison. This observation suggests that extracting additional force field improvements from NMR data may require increased accuracy in J coupling and chemical shift prediction. To further investigate the limitations of current force fields, we also consider conformational populations of dipeptides, which were recently estimated using vibrational spectroscopy.  相似文献   

9.
CHARMM force-field parameters are reported for the tetrahedral intermediate of serine hydrolases. The fitting follows the standard protocol proposed for CHARMM22. The reference data include ab initio (RHF/6-31G*) interaction energies of complexes between water and the model compound 1,1-dimethoxyethoxide, torsional profiles of related model compounds from correlated ab initio (MP2/6-311+G*//B3LYP/6-31+G*) calculations, as well as molecular geometries and vibrational frequencies from density functional theory (B3LYP/6-31+G*). The optimized parameters reproduce the target data well. Their utility is demonstrated by a QM/MM study of the tetrahedral intermediate in Bacillus subtilis lipase A, and by classical molecular modeling of enantioselectivity in Pseudomonas aeruginosa lipase and its mutants.  相似文献   

10.
Inelastic incoherent neutron scattering (IINS) spectra were obtained at 10 K for normal and deuterated L-serine. The geometry of L-serine molecule was optimized for the zwitterion form using ab initio HF, MP2 and DFT (B3LYP) levels with 6-31G* and 6-311 + +G4** basis sets. The theoretical frequencies of normal and d4-L-serine were compared with IINS spectra. Normal coordinate analysis and band assignments based on ab initio calculations and experimental data were presented. IINS frequencies due to the out-of-plane gamma(N-H...O) hydrogen bond motions were observed and identified.  相似文献   

11.
A laser-ablation molecular-beam Fourier transform microwave (LA-MB-FTMW) spectrometer has been successfully applied to the structural study of alpha-aminobutyric acid. Three neutral conformers have been identified in the gas phase by comparing their experimental rotational and 14N nuclear quadrupole coupling parameters with those predicted by ab initio calculations at the MP2/6-311++G(d,p) level. The most stable conformer is stabilized by a bifurcated amine-to-carbonyl hydrogen bond (N--HO=C) and a cis-COOH group, and the side-chain adopts a configuration with a torsion angle tau(C(gamma)-C(beta)-C(alpha)-C') of about 180 degrees. The second most stable conformer exhibits the same configuration for the amino acid skeleton but adopts a different orientation for the side chain with tau(C(gamma)-C(beta)-C(alpha)-C') approximately -60 degrees. In the third conformer an intramolecular hydrogen bond is established between the hydroxyl group and the nitrogen atom (NH--O), with a side-chain orientation similar to that of the most stable conformer.  相似文献   

12.
P. Senthil Kumar 《Tetrahedron》2005,61(23):5633-5639
The potential energy surface of sulfoximines has been searched using ab initio MO and Density Functional Calculations. The electronic structures of the isomers of sulfoximine have been studied using HF/6-31+G*, MP2(full)/6-31+G* and B3LYP/6-31+G* levels. Final energies of these molecules have been calculated at the high accuracy G2 and CBS-Q levels. Though a formal SN double bond is generally considered between sulfur and nitrogen in these systems, theoretical studies do not show any π interaction between them. S-N rotational barriers, bond dissociation energies, atomic charge analysis, and NBO analysis all indicate only a single bond across S-N with a very strong ionic interaction.  相似文献   

13.
The intramolecular mechanism we earlier proposed [Alagona, G.; Desmeules, P.; Ghio, C.; Kollman, P. A. J Am Chem Soc 1984, 106, 3623] for the second proton transfer of the reaction catalyzed by triosephosphate isomerase (TIM) is examined ab initio at the HF and MP2/6-31+G** levels in vacuo for two conformers of the enediolate phosphate (ENEP), with the ethereal oxygen of the phosphate group either syn (X), as in the crystal structure, or anti (Y) with respect to the enediolate carbonyl O. The barrier height for the intramolecular proton transfer occurring in enediolate is very sensitive to electron correlation corrections. The MP2 internal energy barrier is much lower than the HF one, while the free energy (FE) barrier is even more favorable, indicating that the enzyme presence is not requested to speed up that step. An investigation of the dynamical aspects of the mechanism, along the pathway from ENEP A (with H on O(1)) to TS and from TS to ENEP B (with H on O(2)), was, however, carried out in the presence of the enzyme field while using a neutral His-95 with its proton on Ndelta. To perform the FE simulations, it was necessary to parametrize in the AMBER force-field the ENEP A, TS and B species, whose partial charges have been determined with the RESP procedure, with the X and Y arrangements of the phosphate head. Actually, the FE/QM approach produced a low barrier and a substantial balance between A and B, especially at the MP2 level. The trajectories, analyzed paying a particular attention to the positions assumed by His-95 and by the other active site residues, put forward somewhat different H-bond patterns around the X or Y enediolate phosphate.  相似文献   

14.
Zheng  Baishu  Zhou  Fengxiang  Liu  Yi  Wang  Zhaoxu  Liu  Yuan  Ding  Xunlei 《Structural chemistry》2019,30(3):965-977
Structural Chemistry - A new type of halogen bond formed by supermetals or superalkalies with dihalogen molecules was analyzed by means of ab initio at the MP2/aug-cc-pVTZ level. The results reveal...  相似文献   

15.
Parametrization and testing of a new all-atom force field for organic molecules and peptides with fixed bond lengths and bond angles are described. The van der Waals parameters for both the organic molecules and the peptides were taken from J. Phys. Chem. B 2003, 107, 7143 and J. Phys. Chem. B 2004, 108, 12181. First, the values of the 1-4 nonbonded and electrostatic scale factors appropriate to the new force field were determined by computing the conformational energies of six model molecules, namely, ethanol, ethylamine, propanol, propylamine, 1,2-ethanediol, and 1,3-propanediol with different values of these factors. The partial atomic charges of these molecules were obtained by fitting to the electrostatic potentials calculated with the HF/6-31G quantum-mechanical method. Two different charge models (single- and multiple-conformation-derived) were also considered. We demonstrated that the charge model has a stronger effect on the conformational energies than the 1-4 scaling. The choice of a charge model affected the conformational energies of even the smallest molecules considered, whereas the effect of the 1-4 electrostatic or nonbonded scaling was apparent only for 1,3-propanediol. The best agreement with high-level ab initio data was obtained with the multiple-conformation-derived charges and with no scaling of the 1-4 nonbonded or electrostatic interactions (scale factors of 1.0). Next, the torsional parameters of a large number of neutral and charged organic molecules, assumed to be models of the side chains of the 20 naturally occurring amino acids, were computed by fitting to rotational energy profiles obtained from ab initio MP2/6-31G calculations. The quality of the fits was high with average errors for torsional profiles of less than 0.2 kcal/mol. To derive the torsional parameters for the peptide backbone, the partial atomic charges of the 20 neutral and charged amino acids were obtained by fitting to the electrostatic potentials of terminally blocked amino acids using the HF/6-31G quantum-mechanical method. Then, the phi-psi energy maps of Ac-Ala-NMe and Ac-Gly-NMe were computed using MP2/6-31G//HF/6-31G quantum-mechanical methods. The phi-psi energy map of Ac-Ala-NMe was used for refinement of the nonbonded parameters for the backbone nitrogen and hydrogen bonded to it. Subsequently, the main-chain torsional parameters were obtained by fitting the molecular mechanics energies to the phi-psi energy maps of Ac-Ala-NMe and Ac-Gly-NMe. The transferability of the entire force field was demonstrated by reproducing the main energy minima of terminally blocked Ala3 from the literature. The performance of the force field was also evaluated by simulating crystal structures of small peptides. By comparison of simulated and experimental data, examination of the torsional-angle and atom-positional root-mean-square deviations of the energy-minimized crystal structures from the corresponding X-ray model structures demonstrated high accuracy of the force field.  相似文献   

16.
Interactions between aromatic groups and backbone amide groups in protein environments are characterized both through data mining analyses of X‐ray protein structures and through ab initio molecular orbital calculations on a model complex. The data mining analyses of 1029 X‐ray protein structures elucidate the configurational characteristics of the interaction as well as the positions of the interacting moieties involved. On a statistical average, more than seven such interactions occur in a typical protein structure. The configurations of these interactions are restricted with the face‐to‐face orientation as the preferred arrangement. The interaction occurs mainly within a single peptide chain. Both α‐helix and β‐strand secondary structures provide an almost equal number of backbone amides to participate within this interaction. The interaction energy was evaluated with the supermolecular ab initio method at the MP2 level. It is shown that aromatic–amide(backbone) interactions identified in proteins can achieve a stabilization energy of 3.3 kcal/mol. The interaction involves the entirety of the backbone amide rather than only its amine portion. This study concludes that the interaction between aromatic and backbone amide groups is of general significance to protein structure due to its strength and common occurrence. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 80: 44–60, 2000  相似文献   

17.
用量子化学从头计算方法在MP2/6-31G(d)水平上计算了单重态的CH2与二甲醚中C-H键插入反应的过程,并在MP4/6-31G(d)水平上计算了反应物、过渡态和产物的能量。反应仅具有一个8.1kJ/mol的早期势垒,反应过程是卡宾的一个亲电-亲核过程,在插入过程中,卡宾空的p轨道和占有一对孤电子的σ轨道分别指向C-H键的H原子和C原子。  相似文献   

18.
The structures of coordination complexes of methylmagnesium chloride with 1‐halogen‐3‐methoxy‐1‐propynes have been studied by means of ab initio methods (RHF/3‐21G*, RHF/6‐31G* and RHF/6‐31G**), taking into account the electron correlation by Møller‐Plesset perturbation theory (MP2). Two pathways of the nucleophilic halogen substitution reaction between the reagents have been considered. The calculations predict the addition–elimination mechanism as advantageous for the reaction. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

19.
Isomerization processes of a double bond site in propene and methylthiopropene molecules with the hydroxide ion were studied in the framework of the RHF/6-31+G*, MP2/6-31+G*, and B3LYP/6-31+G* (density functional) ab initio methods. The solvent effect was taken into account using PCM in its IEFPCM and SCIPCM versions. It is shown that to construct a reaction profile for propene rearrangement, it suffices to perform geometry optimization of stationary points within the Born–Onsager model with further refinement of the energy using IEFPCM. The reaction profiles obtained display that the multiple bond migration mechanism involving the hydroxide ion proton is energetically preferable to the two-stage mechanism forming a solvated carbanion for the propene molecule and for the methylthiopropene molecule that forms a much more stable carbanion.  相似文献   

20.
According to the popular “mobile proton model” for peptide ion fragmentation in tandem mass spectrometry, peptide bond cleavage is typically preceded by intramolecular proton transfer from basic sites to an amide nitrogen in the backbone. If the intrinsic barrier to dissociation is the same for all backbone sites, the fragmentation propensity at each amide bond should reflect the stability of the corresponding N-protonated isomer. This hypothesis was tested by using ab initio and force-field computations on several polyalanines and Leu-enkephalin. The results agree acceptably with experimental reports, supporting the hypothesis. It was found that backbone N-protonation is most favorable near the C-terminus. The preference for C-terminal N-protonation, which is stronger for longer polyalanines, may be understood in terms of the well known “helix macrodipole” in the corresponding helical conformations. The opposite stability trend is found for peptides constrained to be linear, which is initially surprising but turns out to be consistent with the reversed direction of the macrodipole in the linear conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号