首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The construction of a faithful 3D pore space model of a porous medium that could reproduce the macroscopic behavior of that medium is of great interest in various fields including medicine, material science, hydrology and petroleum engineering. A computationally efficient algorithm is developed that uses the probability perturbation method and sequential multiple-point statistics simulations to generate 3D stochastic and equiprobable representations of random porous media when only a 2D thin section image is available. By employing the probability perturbation method as a gradual deformation technique, the pore patterns of a single 2D image are deformed to generate a series of 2D stochastically simulated images. The 3D pore structure is then generated by simply stacking the 2D-simulated images. The quality of the 3D reconstruction is critically dependent on the rate of deformation and a simple general procedure for choosing this parameter is presented. Various criteria such as porosity, two-point auto-correlation function, multiple-point connectivity function, local percolation probability, absolute permeability obtained by lattice-Boltzmann method (LBM), formation factor and two-phase relative permeability calculations are used to validate the results. The method is tested on two random porous solids; Berea Sandstone and synthetic Silica, for which directly measured 3D micro-CT images are available. The stochastically reconstructed 3D pore space preserves the low- and high-order spatial statistics, the macroscopic flow properties and the microstructure of the 3D micro-CT images.  相似文献   

2.
Pore network analysis is used to investigate the effects of microscopic parameters of the pore structure such as pore geometry, pore-size distribution, pore space topology and fractal roughness porosity on resistivity index curves of strongly water-wet porous media. The pore structure is represented by a three-dimensional network of lamellar capillary tubes with fractal roughness features along their pore-walls. Oil-water drainage (conventional porous plate method) is simulated with a bond percolation-and-fractal roughness model without trapping of wetting fluid. The resistivity index, saturation exponent and capillary pressure are expressed as approximate functions of the pore network parameters by adopting some simplifying assumptions and using effective medium approximation, universal scaling laws of percolation theory and fractal geometry. Some new phenomenological models of resistivity index curves of porous media are derived. Finally, the eventual changes of resistivity index caused by the permanent entrapment of wetting fluid in the pore network are also studied.Resistivity index and saturation exponent are decreasing functions of the degree of correlation between pore volume and pore size as well as the width of the pore size distribution, whereas they are independent on the mean pore size. At low water saturations, the saturation exponent decreases or increases for pore systems of low or high fractal roughness porosity respectively, and obtains finite values only when the wetting fluid is not trapped in the pore network. The dependence of saturation exponent on water saturation weakens for strong correlation between pore volume and pore size, high network connectivity, medium pore-wall roughness porosity and medium width of the pore size distribution. The resistivity index can be described succesfully by generalized 3-parameter power functions of water saturation where the parameter values are related closely with the geometrical, topological and fractal properties of the pore structure.  相似文献   

3.
Understanding the connection between pore structure and NMR behavior of fluid-saturated porous rock is essential in interpreting the results of NMR measurements in the field or laboratory and in establishing correlations between NMR parameters and petrophysical properties. In this paper we use random-walk simulation to study NMR relaxation and time-dependent diffusion in 3D stochastic replicas of real porous media. The microstructures are generated using low-order statistical information (porosity, void–void autocorrelation function) obtained from 2D images of thepore space. Pore size distributions obtained directly by a 3D pore space partitioning method and indirectly by inversion of NMR relaxation data are compared for the first time. For surface relaxation conditions typical of reservoir rock, diffusional coupling between pores of different size is observed to cause considerable deviations between the two distributions. Nevertheless, the pore space correlation length and the size of surface asperity are mirrored in the NMR relaxation data for the media studied. This observation is used to explain the performance of NMR-based permeability correlations. Additionally, the early time behavior of the time-dependent diffusion coefficient is shown to reflect the average pore surface-to-volume ratio. For sufficiently high values of the self-diffusion coefficient, the tortuosity of the pore space is also recovered from the long-time behavior of the time-dependent diffusion coefficient, even in the presence of surface relaxation. Finally, the simulations expose key limitations of the stochastic reconstruction method, and allow suggestions for future development to be made.  相似文献   

4.
5.
A systematic numerical study of the macroscopic electrical conductivity of vugular porous media has been conducted by solving the Laplace equation. The structure of these bimodal media is characterized by the micro and macroporosities and by the micro and macro correlation lengths. The overall correlation function is analyzed. It is shown that mainly depends on the total porosity, and very little on the other parameters. Moreover, similar results are obtained when the microporous medium is considered as a continuum. Finally, these predictions are compared to experimental data for the formation factor and the thermal conductivity of limestones; the agreement is good in the first case, and excellent in the second.  相似文献   

6.
The present work attempts to identify the roles of flow and geometric variables on the scaling factor which is a necessary parameter for modeling the apparent viscosity of non-Newtonian fluid in porous media. While idealizing the porous media microstructure as arrays of circular and square cylinders, the present study uses multi-relaxation time lattice Boltzmann method to conduct pore-scale simulation of shear thinning non-Newtonian fluid flow. Variation in the size and inclusion ratio of the solid cylinders generates wide range of porous media with varying porosity and permeability. The present study also used stochastic reconstruction technique to generate realistic, random porous microstructures. For each case, pore-scale fluid flow simulation enables the calculation of equivalent viscosity based on the computed shear rate within the pores. It is observed that the scaling factor has strong dependence on porosity, permeability, tortuosity and the percolation threshold, while approaching the maximum value at the percolation threshold porosity. The present investigation quantifies and proposes meaningful correlations between the scaling factor and the macroscopic properties of the porous media.  相似文献   

7.
8.
Hilfer  R. 《Transport in Porous Media》2002,46(2-3):373-390
The paper discusses local porosity theory and its relation with other geometric characterization methods for porous media such as correlation functions and contact distributions. Special emphasis is placed on the charcterization of geometric observables through Hadwigers theorem in stochastic geometry. The four basic Minkowski functionals are introduced into local porosity theory, and for the first time a relationship is established between the Euler characteristic and the local percolation probabilities. Local porosity distributions and local percolation probabilities provide a scale dependent characterization of the microstructure of porous media that can be used in an effective medium approach to predict transport.  相似文献   

9.
Considerable effort has been directed towards the application of percolation theory and fractal modeling to porous media. We combine these areas of research to investigate percolation in prefractal porous media. We estimated percolation thresholds in the pore space of homogeneous random 2-dimensional prefractals as a function of the fractal scale invariance ratio b and iteration level i. The percolation thresholds for these simulations were found to increase beyond the 0.5927l... porosity expected in Bernoulli (uncorrelated) percolation networks. Percolation in prefractals occurs through large pores connected by small pores. The thresholds increase with both b (a finite size effect) and i. The results allow the prediction of the onset of percolation in models of prefractal porous media and can be used to bound modeling efforts. More fundamental applications are also possible. Only a limited range of parameters has been explored empirically but extrapolations allow the critical fractal dimension to be estimated for a large combination of b and i values. Extrapolation to infinite iterations suggests that there may be a critical fractal dimension of the solid at which the pore space percolates. The extrapolated value is close to 1.89 – the well-known fractal dimension of percolation clusters in 2-dimensional Bernoulli networks.  相似文献   

10.
Lovetskii  E. E.  Selyakov  V. I. 《Fluid Dynamics》1984,19(3):411-416
Models that describe the permeability of media with allowance for the structure of the pore space are considered. It is proposed to use percolation theory to describe the topology of the pore space. If the distribution of the pore channels in the medium is random, percolation theory makes it possible to determine the percolation threshold, and also to estimate the fluid conductivity of the cluster that then results. Results obtained for models of granular, porous, and cracked media are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 81–86, May–June, 1984.  相似文献   

11.
Fluid capacity distributions of random porous media   总被引:1,自引:0,他引:1  
As a quantitative measure of the microstructure in a statistically homogeneous porous material, we introduce the notion of thefluid capacity at a specified length scale . In two dimensions, fluid capacity is the void space per unit area for a square of side and in three dimensions it is the void space per unit volume for a cube of side . The most random distribution of fluid capacity, for a prescribed mean fluid capacity, corresponds to an exponential distribution. The distribution of fluid capacity is important during unstable fluid displacements in porous media where viscous fingering occurs. For a material with an exponential fluid capacity distribution, an unstable displacement process can be simulated by simple stochastic algorithms related to diffusion-limited aggregation. We measure the two-dimensional fluid capacity distributions of published cross-section photomicrographs of sandstone, salt, and packed beds of glass beads, for various length scales A. The form of the distribution depends upon the magnitude of the length scale . For the sandstone and salt packs, appropriate length scales are found on which the fluid capacity has, to a good approximation, an exponential distribution. An exponential distribution appears to be inappropriate for the packed bed of glass beads on all length scales.  相似文献   

12.
Long square-lattice and cubic-lattice samples consisting of many layers are simulated. Within each layer, the concentration of permeable bonds is constant whereas each layer has a different concentration chosen randomly from the interval between the percolation threshold and unit concentration. The conductivity of the random resistor network corresponding to this percolation model is calculated, both parallel and perpendicular to the layers, in both two and three dimensions. For the conductivity parallel to the layers, an effective medium calculation comes within 10% of the true conductivity. For the conductivity perpendicular to the layers, percolation theory is necessary.List of Symbols G Total Conductivity in units of the conductivity of one bond - L Length of sample in units of the length of one bond - n Width of sample in units of the length of one bond - N Number of layers - p Probability that a bond conduct - p c Percolation threshold - R Resistivity in units of the resistivity of one bond - t Percolation conductivity exponent - v Percolation correlation length exponent - Correlation length in units of the length of one bond  相似文献   

13.
Compacted crushed rock salt is considered as potential backfill material in repositories for nuclear waste. To evaluate the sealing properties of this material knowledge concerning the nature of the pore space is of eminent interest. Here, the pore microstructures of crushed rock salt samples with different compaction states were investigated by X-ray (XCT) computed tomography and Focused Ion Beam nanotomography (FIB-nt). Based on these methods the pore microstructures were reconstructed and quantitatively analyzed with respect to porosity, connectivity and percolation properties. Regarding pores with radii \(> 4\,\upmu \hbox {m}\) , porosity differs substantially in the two analyzed samples ( \(\phi = 0.01\) and 0.10). The pore microstructures are considered isotropic in connectivity and percolation threshold. Using two finite-scaling schemes we found percolation thresholds with critical porosities \(\phi _{c} > 0.05\) . Based on statistical considerations, the millimeter size samples that can be analyzed by XCT are large enough to provide a meaningful picture of the pore geometry related to macroporosity. The samples contain also a small fraction (i.e. \(< 0.01\) ) of pores with radii \(< 1\,\upmu \hbox {m}\) , which were resolved by FIB-nt. Often these pores can be found along grain boundaries. These pores are granular shaped and are not connected to each other. Typical samples size that can be analyzed by FIB-nt is on the order of tens of microns, which turned out to be too small to provide representative geometric information unless an effort is made that involves several FIB-nt realizations per sample.  相似文献   

14.
We invoke pore-scale models to evaluate grain shape effects on petrophysical properties of three-dimensional (3D) images from micro-CT scans and consolidated grain packs. Four sets of grain-packs are constructed on the basis of a new sedimentary algorithm with the following shapes: exact angular grain shapes identified from micro-CT scans, ellipsoids fitted to angular grains, and spheres with volume and surface-to-volume ratio equal to original angular grains on a grain-by-grain basis. Subsequently, a geometry-based cementation algorithm implements pore space alteration due to diagenesis. Eight micro-CT scans and 144 grain-pack images with $500 \times 500 \times 500$ voxels (the resolution units of 3D images) are analyzed in this study. Absolute permeability, formation factor, and capillary pressure are calculated for each 3D image using numerical methods and compared to available core measurements. Angular grain packs give rise to the best agreement with experimental measurements. Cement volume and its spatial distribution in the pore space significantly affect all calculated petrophysical properties. Available empirical permeability correlations for non-spherical grains underestimate permeability between 30 and 70 % for the analyzed samples. Kozeny–Carman’s predictions agree with modeled permeability for spherical grain packs but overestimate permeability for micro-CT images and non-spherical grain packs when volume-based radii are used to calculate the average grain size in a pack. We identify surface-to-volume ratio and grain shape as fundamental physical parameters that control fluid distribution and flow in porous media for equivalent porosity samples.  相似文献   

15.
A simple theoretical model is described for deriving a 1-dimensional equation for the spreading of a tracer in a steady flow at the field scale. The originality of the model is to use a stochastic appoach not in the 3-dimensional space but in the 1-D space of the stream tubes. The simplicity of calculation comes from the local relationship between permeability and velocity in a 1-D flow. The spreading of a tracer front is due to local variations in the cross-sectional area of the stream tubes, which induces randomness in travel time. The derived transport equation is averaged in the main flow direction. It differs from the standard dispersion equation. The roles of time and space variables are exchanged. This result can be explained by using the statistical theory of Continuous Time Random Walk instead of a standard Random Walk. However, the two equations are very close, since their solutions have the same first and second moments. Dispersivity is found to be equal to the product of the correlation length by the variance of the logarithm of permeability, a result similar to Gelhar's macrodispersion.Nomenclature A total cross-section area of the sample - C (resident) concentration of tracer - D,D * dispersion coefficient - F flux of tracer - G probability distribution function for permeability in the stream-tube segments - I tracer intensity (mass crossing a surface per unit time) - K permeability - L length of the medium - M number of stream tubes in the medium - N number of segments along a stream tube - P pressure - Q total flow rate in the sample - a length of an elementary stream-tube segment - g probability distribution function for permeability in the space - i, j indices, tube numbers - q flow rate in each stream tube - s variable cross-section area of a stream tube - t, t time - u front velocity - x space variable in the flow direction - small local variation in time - , t longitudinal, transverse dispersivity - porosity of the porous medium - correlation length in the permeability field - viscosity of the fluid - time for filling an elementary stream tube segment - standard deviation of a stochastic variable - probability distribution of arrival times (Gaussian)  相似文献   

16.
Permeability of Porous Media from Simulated NMR Response   总被引:2,自引:0,他引:2  
Nuclear Magnetic Resonance (NMR) is an increasingly popular well-logging tool in petroleum industry because it is the only tool that attempts to estimate formation permeability. In this paper, spatially correlated porous media are generated. Permeabilities of these media are computed by the lattice Boltzmann method. NMR relaxation responses are simulated by a random walk technique and formation factors are computed by solving a Laplacian equation. The testing of commonly used NMR permeability correlations shows that three conditions should be met for the validity of these correlations. The surface relaxivity should not vary significantly. The formation factor should depend only on porosity. And the characteristic pore body radius should be proportional to the characteristic throat radius. The correlations are improved by including surface relaxivity and formation factor.  相似文献   

17.
18.
Geotechnical engineering applications are characterized by various sources of uncertainties, most of them attributed to the stochastic nature of soil parameters and their properties. In particular, soil’s inherent random heterogeneity, inexact measurements and insufficient data necessitate numerical methods that incorporate the stochastic soil properties for a realistic representation of the soil behavior. In this paper, the process of consolidation of saturated soils is examined on the basis of the coupled u–p finite element formulation. A generalized Newmark implicit time integration scheme is implemented to treat the time integration of the coupled consolidation equations. A benchmark geotechnical engineering problem of a strip footing resting on a saturated soil layer is analyzed. The soil permeability coefficient k, as well as the elastic modulus E, are treated as lognormal random fields in two dimensions. The investigation of the effect of the spatial variability of the soil properties on the response of a footing–soil system is examined by means of the direct Monte Carlo simulation. The influence of the coefficient of variation and correlation length of the stochastic fields is quantified in terms of footing settlements, as well as excess soil water pore pressure. The effects of spatial variability of the permeability coefficient k and the elastic modulus E on the system response are demonstrated. It is shown that the footing differential settlement, along with generated excess pore pressures, is highly affected by the variation of the soil properties considered, as well as the correlation length of the underlying random fields.  相似文献   

19.
We consider the influences of correlation length and aperture variability on the REV, the equivalent permeability of a fracture network, and the uncertainty in the equivalent permeability using a two-dimensional orthogonal bond percolation model. The percolation threshold, correlation length, effective conductivity, and coefficient of variation of the effective conductivity are investigated over statistically representative multiple realizations with Monte Carlo simulations in 2D fracture networks that have log-normally distributed individual fracture permeabilities. We show that although the aperture variability is large, the REV and the correlation length are similar near the percolation threshold. In contrast, when the fracture density is much larger than the percolation threshold they diverge as the aperture variability increases. We characterize the effects of correlation length and aperture variability on effective conductivity with a simple function. From the coefficient of variation analysis, the correlation length can be a criterion for evaluating which conceptual model is appropriate for describing the flow system for a given fracture network when aperture variability is sufficiently small. However, discrete fracture network models are recommended for flow simulation models because of the difficulty of REV estimation and the uncertainty in equivalent hydraulic parameters when aperture variability is large.  相似文献   

20.
We predict capillary-pressure (drainage) curves in tight-gas sandstones which have little matrix or microporosity using a quantitative grain-scale model. The model accounts for the geometric results of some depositional and diagenetic processes important for porosity and permeability reduction in tight-gas sandstones, such as deformation of ductile grains during burial and quartz cementation. The model represents the original sediment as a dense, disordered packing of spheres. We simulated the evolution of this model sediment into a low-porosity sandstone by applying different amounts of ductile grains and quartz precipitation. A substantial fraction of original pore throats in the sediment is closed by the simulated diagenetic alteration. Because the percolation threshold corresponds to closure of half of the pore throats, the pore space in this type of tight-gas sandstone is poorly connected and is often close to being completely disconnected. The drainage curve for different model rocks was computed using invasion percolation in a network taken directly from the grain-scale geometry and topology of the model. Some general trends follow classical expectations and were confirmed by experimental measurements: increasing the amount of cement shifts the drainage curve to larger pressures. This is related to reduction of the connectivity of pore space resulting from closure of throats. Existence of ductile grains in the ductile grain model also reduces the connectivity of pore space but it treats the throats distribution differently causing the drainage curves to be shifted to larger irreducible water saturation when cement is added to the model. The range of porosities in which these connectivity effects are important corresponds to the range of porosities common for tight gas sandstones. Consequently these rocks can exhibit small effective permeability to gas even at large gas saturations. This problem occurs at larger porosities in rocks with significant content of ductile grains because ductile deformation blocks a significant fraction of pore throats even before cementation begins. Predicted drainage curves agree with measurements on two samples with little microporosity, one dominated by rigid grains, the other containing a significant fraction of ductile grains. We conclude that connectivity of the matrix pore space is an important factor for an understanding of flow properties of tight-gas sandstones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号