首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let T be a nonempty set of real numbers, X a metric space with metric d and XT the set of all functions from T into X. If fXT and n is a positive integer, we set , where the supremum is taken over all numbers a1,…,an,b1,…,bn from T such that a1b1a2b2anbn. The sequence is called the modulus of variation of f in the sense of Chanturiya. We prove the following pointwise selection principle: If a sequence of functions is such that the closure in X of the set is compact for each tT and
(∗)
then there exists a subsequence of , which converges in X pointwise on T to a function fXT satisfying limn→∞ν(n,f)/n=0. We show that condition (*) is optimal (the best possible) and that all known pointwise selection theorems follow from this result (including Helly's theorem). Also, we establish several variants of the above theorem for the almost everywhere convergence and weak pointwise convergence when X is a reflexive separable Banach space.  相似文献   

2.
Let fC[−1, 1] be real-valued. We consider the sequence of strong unicity constants (γn(f))n induced by the polynomials of best uniform approximation of f. It is proved that lim infn→∞ γn(f)=0, whenever f is not a polynomial.  相似文献   

3.
MAXIMUMTREESOFFINITESEQUENCES¥WUSHIQUANAbstract:Letn,s1,s2,...,snbenon-negativeintegersandM(s1,s2,...,sn)={(a1,a2,...,a.)|aii...  相似文献   

4.
We deal with the functionz(f(z), f′(z)) wheref(z)=∑i0 aizi, (ai ) with limi→∞ ai+1×ai−1/(ai)2=q. We investigate the convergence of the vector QD algorithm. We give the asymptotic behaviour of the generalized Hankel determinants. A convergence result on the vector orthogonal polynomials is proved.  相似文献   

5.
A surface Γ=(f 1(X1,..., xm),...,f n(x1,..., xm)) is said to be extremal if for almost all points of Γ the inequality $$\parallel a_1 f_1 (x_1 , \ldots ,x_m ) + \ldots + a_n f_n (x_1 , \ldots ,x_m )\parallel< H^{ - n - \varepsilon } ,$$ , where H=max(¦a i¦) (i=1, 2, ..., n), has only a finite number of solutions in the integersa 1, ...,a n. In this note we prove, for a specific relationship between m and n and a functional condition on the functionsf 1, ...,f n, the extremality of a class of surfaces in n-dimensional Euclidean space.  相似文献   

6.
Let ga(t) and gb(t) be two positive, strictly convex and continuously differentiable functions on an interval (a, b) (−∞ a < b ∞), and let {Ln} be a sequence of linear positive operators, each with domain containing 1, t, ga(t), and gb(t). If Ln(ƒ; x) converges to ƒ(x) uniformly on a compact subset of (a, b) for the test functions ƒ(t) = 1, t, ga(t), gb(t), then so does every ƒ ε C(a, b) satisfying ƒ(t) = O(ga(t)) (ta+) and ƒ(t) = O(gb(t)) (tb). We estimate the convergence rate of Lnƒ in terms of the rates for the test functions and the moduli of continuity of ƒ and ƒ′.  相似文献   

7.
The binomial arithmetical rank of a binomial ideal I is the smallest integer s for which there exist binomials f1,..., fs in I such that rad (I) = rad (f1,..., fs). We completely determine the binomial arithmetical rank for the ideals of monomial curves in PKnP_K^n. In particular we prove that, if the characteristic of the field K is zero, then bar (I(C)) = n - 1 if C is complete intersection, otherwise bar (I(C)) = n. While it is known that if the characteristic of the field K is positive, then bar (I(C)) = n - 1 always.  相似文献   

8.
By using Krasnoselskii's fixed point theorem and upper and lower solutions method, we find some sets of positive values λ determining that there exist positive T-periodic solutions to the higher-dimensional functional difference equations of the form where A(n)=diag[a1(n),a2(n),…,am(n)], h(n)=diag[h1(n),h2(n),…,hm(n)], aj,hj :ZR+, τ :ZZ are T -periodic, j=1,2,…,m, T1, λ>0, x :ZRm, f :R+mR+m, where R+m={(x1,…,xm)TRm, xj0, j=1,2,…,m}, R+={xR, x>0}.  相似文献   

9.
Let X1,…, Xn be i.i.d. random variables symmetric about zero. Let Ri(t) be the rank of |Xitn−1/2| among |X1tn−1/2|,…, |Xntn−1/2| and Tn(t) = Σi = 1nφ((n + 1)−1Ri(t))sign(Xitn−1/2). We show that there exists a sequence of random variables Vn such that sup0 ≤ t ≤ 1 |Tn(t) − Tn(0) − tVn| → 0 in probability, as n → ∞. Vn is asymptotically normal.  相似文献   

10.
Let μ be a probability measure on [− a, a], a > 0, and let x0ε[− a, a], f ε Cn([−2a, 2a]), n 0 even. Using moment methods we derive best upper bounds to ¦∫aa ([f(x0 + y) + f(x0y)]/2) μ(dy) − f(x0)¦, leading to sharp inequalities that are attainable and involve the second modulus of continuity of f(n) or an upper bound of it.  相似文献   

11.
LetD be a division algebra over a fieldk, letn be an arbitrary positive integer, and letk(x 1,...,x n) denote the rational function field inn variables overk. In this note we complete previous work by proving that the following three conditions are equivalent: (i) there exists an integerj such that the matrix ringM j(D) contains a commutative subfield which has transcendence degreen overk; (ii) K dim (Dk k(x 1,...,x n )) =n; (iii) gl. dim (Dk k(x 1,...,x n )) =n. The crucial tool in the proof of this theorem is the Nullstellensatz forD[x 1,...,x n] which was obtained by Amitsur and Small.  相似文献   

12.
Let Bn( f,q;x), n=1,2,… be q-Bernstein polynomials of a function f : [0,1]→C. The polynomials Bn( f,1;x) are classical Bernstein polynomials. For q≠1 the properties of q-Bernstein polynomials differ essentially from those in the classical case. This paper deals with approximating properties of q-Bernstein polynomials in the case q>1 with respect to both n and q. Some estimates on the rate of convergence are given. In particular, it is proved that for a function f analytic in {z: |z|<q+} the rate of convergence of {Bn( f,q;x)} to f(x) in the norm of C[0,1] has the order qn (versus 1/n for the classical Bernstein polynomials). Also iterates of q-Bernstein polynomials {Bnjn( f,q;x)}, where both n→∞ and jn→∞, are studied. It is shown that for q(0,1) the asymptotic behavior of such iterates is quite different from the classical case. In particular, the limit does not depend on the rate of jn→∞.  相似文献   

13.
The behavior of the posterior for a large observation is considered. Two basic situations are discussed; location vectors and natural parameters.Let X = (X1, X2, …, Xn) be an observation from a multivariate exponential distribution with that natural parameter Θ = (Θ1, Θ2, …, Θn). Let θx* be the posterior mode. Sufficient conditions are presented for the distribution of Θ − θx* given X = x to converge to a multivariate normal with mean vector 0 as |x| tends to infinity. These same conditions imply that E(Θ | X = x) − θx* converges to the zero vector as |x| tends to infinity.The posterior for an observation X = (X1, X2, …, Xn is considered for a location vector Θ = (Θ1, Θ2, …, Θn) as x gets large along a path, γ, in Rn. Sufficient conditions are given for the distribution of γ(t) − Θ given X = γ(t) to converge in law as t → ∞. Slightly stronger conditions ensure that γ(t) − E(Θ | X = γ(t)) converges to the mean of the limiting distribution.These basic results about the posterior mean are extended to cover other estimators. Loss functions which are convex functions of absolute error are considered. Let δ be a Bayes estimator for a loss function of this type. Generally, if the distribution of Θ − E(Θ | X = γ(t)) given X = γ(t) converges in law to a symmetric distribution as t → ∞, it is shown that δ(γ(t)) − E(Θ | X = γ(t)) → 0 as t → ∞.  相似文献   

14.
Summary We study the following nonlinear method of approximation by trigonometric polynomials in this paper. For a periodic function f we take as an approximant a trigonometric polynomial of the form Gm(f ) := ∑kЄΛ f^(k) e (i k,x), where ΛˆZd is a set of cardinality m containing the indices of the m biggest (in absolute value) Fourier coefficients f^ (k) of function f . Note that Gm(f ) gives the best m-term approximant in the L2-norm and, therefore, for each f ЄL2, ║f-Gm(f )║2→0 as m →∞. It is known from previous results that in the case of p ≠2 the condition f ЄLp does not guarantee the convergence ║f-Gm(f )║p→0 as m →∞.. We study the following question. What conditions (in addition to f ЄLp) provide the convergence ║f-Gm(f )║p→0 as m →∞? In our previous paper [10] in the case 2< p ≤∞ we have found necessary and sufficient conditions on a decreasing sequence {An}n=1to guarantee the Lp-convergence of {Gm(f )} for all f ЄLp , satisfying an (f ) ≤An , where {an (f )} is a decreasing rearrangement of absolute values of the Fourier coefficients of f. In this paper we are looking for necessary and sufficient conditions on a sequence {M (m)} such that the conditions f ЄLp and ║GM(m)(f ) - Gm(f )║p →0 as m →∞ imply ║f - Gm(f )║p →0 as m →∞. We have found these conditions in the case when p is an even number or p = ∞.  相似文献   

15.
Let A be a commutative ring and n 3 a positive integer. In this paper, we consider unimodular rows (f1(x),..., fn(x)) over A[x]. We prove that, if the row of the leading coefficients of fi(x) is unimodular over A and a A, then there exists En(A[x]) such that (f1(x),...,fn(x)) = (f1(a),...,fn(a)). Also, if A is a Noetherian ring with finite Krull dimension and the row of leading coefficients satisfies the same condition, then we give a bound for the length of in terms of elementary transvections.Partially supported by INTAS 93–436EXT and DFG–RFBR grant No. 96–01–00092G.2000 Mathematics Subject Classification: 19A13, 19B14, 13C10, 13B25, 13F20  相似文献   

16.
In [2], it was shown that if a and b are multiplicatively independent integers and ɛ > 0, then the inequality gcd (an − 1,bn − 1) < exp(ɛn) holds for all but finitely many positive integers n. Here, we generalize the above result. In particular, we show that if f(x),f1(x),g(x),g1(x) are non-zero polynomials with integer coefficients, then for every ɛ > 0, the inequality gcd (f(n)an+g(n), f1(n)bn+g1(n)) < exp(ne){\rm gcd}\, (f(n)a^n+g(n), f_1(n)b^n+g_1(n)) < \exp(n\varepsilon) holds for all but finitely many positive integers n.  相似文献   

17.
An Engel condition with generalized derivations on multilinear polynomials   总被引:1,自引:1,他引:0  
Let R be a prime ring with extended centroid C, g a nonzero generalized derivation of R, f (x 1,..., x n) a multilinear polynomial over C, I a nonzero right ideal of R. If [g(f(r 1,..., r n)), f(r 1,..., r n)] = 0, for all r 1, ..., r nI, then either g(x) = ax, with (a − γ)I = 0 and a suitable γ ∈ C or there exists an idempotent element esoc(RC) such that IC = eRC and one of the following holds:
(i)  f(x 1,..., x n) is central valued in eRCe
(ii)  g(x) = cx + xb, where (c+b+α)e = 0, for α ∈ C, and f (x 1,..., x n)2 is central valued in eRCe
(iii)  char(R) = 2 and s 4(x 1, x 2, x 3, x 4) is an identity for eRCe.
Supported by a grant from M.I.U.R.  相似文献   

18.
Denote by xn,k(α,β) and xn,k(λ)=xn,k(λ−1/2,λ−1/2) the zeros, in decreasing order, of the Jacobi polynomial P(α,β)n(x) and of the ultraspherical (Gegenbauer) polynomial Cλn(x), respectively. The monotonicity of xn,k(α,β) as functions of α and β, α,β>−1, is investigated. Necessary conditions such that the zeros of P(a,b)n(x) are smaller (greater) than the zeros of P(α,β)n(x) are provided. A. Markov proved that xn,k(a,b)<xn,k(α,β) (xn,k(a,b)>xn,k(α,β)) for every n and each k, 1kn if a>α and b<β (a<α and b>β). We prove the converse statement of Markov's theorem. The question of how large the function fn(λ) could be such that the products fn(λ)xn,k(λ), k=1,…,[n/2] are increasing functions of λ, for λ>−1/2, is also discussed. Elbert and Siafarikas proved that fn(λ)=(λ+(2n2+1)/(4n+2))1/2 obeys this property. We establish the sharpness of their result.  相似文献   

19.
We provide irreducibility criteria for multivariate polynomials with coefficients in an arbitrary field that extend a classical result of Pólya for polynomials with integer coefficients. In particular, we provide irreducibility conditions for polynomials of the form f(X)(Y ? f 1(X))…(Y ? f n (X)) + g(X), with f, f 1, ?, f n , g univariate polynomials over an arbitrary field.  相似文献   

20.
Given a set of values x1, x2,..., xn, of which k are nonzero, the compaction problem is the problem of moving the nonzero elements into the first k consecutive memory locations. The chaining problem asks that the nonzero elements be put into a linked list. One can in addition require that the elements remain in the same order, leading to the problems of ordered compaction and ordered chaining, respectively. This paper introduces a technique involving perfect hash functions that leads to a deterministic algorithm for ordered compaction running on a CRCW PRAM in time O(log k/log log n) using n processors. A matching lower bound for unordered compaction is given. The ordered chaining problem is shown to be solvable in time O(α(k)) with n processors (where α is a functional inverse of Ackermann′s function) and unordered chaining is shown to he solvable in constant time with n processors when k < n1/4− ε.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号