共查询到20条相似文献,搜索用时 109 毫秒
1.
利用扫描隧道显微镜研究了荧光液晶分子2, 5-二-[2-(3, 4-二-十二烷氧基-苯基)-乙烯基]-3, 6-二甲基吡嗪(BPDP12)在石墨表面上自组装单层膜的结构. 实验结果表明, 该化合物在石墨表面形成两种自组装结构:一种是稳定的, 分子的共轭中心相互平行, 烷基链相互交错的密排结构;另一种是不稳定的, 分子的共轭中心彼此为烷基链所分隔的非密排结构. 分子之间较强的π-π作用和分子烷基链之间的范德华作用力对分子组装的取向形成竞争, 是产生两种不同组装结构的根本原因. 相似文献
2.
表面分子自组装结构的外界调控及STM研究进展 总被引:1,自引:1,他引:1
结合近年来国内外的研究工作, 概述了利用外界调控方式包括溶剂调控、热调控、光激发调控及电场/电位调控表面分子自组装结构的STM研究进展, 展望了该领域今后的研究方向. 相似文献
3.
Rui GUO Jialin ZHANG Songtao ZHAO Xiaojiang YU Shu ZHONG Shuo SUN Zhenyu LI Wei CHEN 《物理化学学报》2017,33(3):627-632
Corannulene (COR) is considered a promising molecular building block for organic electronics owing to its intriguing geometrical and electronic properties. Intensive research efforts have been devoted to understanding the assembly behavior and electronic structure of COR and its derivatives on various metal surfaces via low-temperature scanning tunneling microscopy (LT-STM). Here we report the formation of binary molecular networks of copper hexadecafluorophthalocyanine (F16CuPc)-COR self-assembled on the highly oriented pyrolytic graphite (HOPG) and Ag (111) substrates. Intermolecular hydrogen bonding between F16CuPc and COR facilitates the formation of binary molecular networks on HOPG and further induces a preference for bowl-down configured COR molecules. This observed configuration preference disappears on Ag (111) substrate, where COR molecules lie on the substrate with their bowl openings pointing up and down randomly. We propose that strong interfacial interactions between the molecule and Ag (111) surface constrain the bowl inversion of the COR molecule, which thus retains its initial configuration upon adsorption. 相似文献
4.
OTS自组装单分子膜在玻璃表面形成过程的AFM研究 总被引:7,自引:0,他引:7
运用原子力显微镜研究了十八烷工碱氯硅烷在玻璃表面自组装形成单分子膜的过程。通过对样品表面的显微图像,表面平均粗糙度及前进接触角的测量分析,揭示了自组装单分子膜在玻璃表面的生长规律,并探索反应初期玻璃表面的吸附特点。 相似文献
5.
6.
运用原子力显微镜研究了十八烷基三氯硅烷在玻璃表面自组装形成单分子膜的过程.通过对样品表面的显微图像、表面平均粗糙度及前进接触角的测量分析,揭示了自组装单分子膜在玻璃表面的生长规律,并探索反应初期玻璃表面的吸附特点. 相似文献
7.
利用超高真空低温扫描隧道显微镜系统研究了meso-四对甲氧基苯基卟啉钴分子在Au(111)、Ag(111)和Cu(111)表面的吸附与自组装.该分子在金属表面可以形成两种组装结构A和B.在结构A中,分子间的相互作用主要为π-π堆叠,仅在Au(111)和Ag(111)表面被实验观察到;在结构B中,分子间的相互作用为氢键,仅在Ag(111)和Cu(111)表面被实验观察到.分子-衬底相互作用的差异所引起的分子吸附构象变化被认为是导致不同衬底上的分子形成不同组装结构的原因.研究发现在不同衬底上,分子形成自组装结构的行为存在明显差异.在相近覆盖度下,未参与组装的分子的比例在Cu(111)表面最高, Au(111)次之, Ag(111)最低.表面上参与形成两种组装结构的分子与未参与组装的分子的比例还可通过覆盖度和退火来进行调控. 相似文献
8.
9.
报导了酞菁氧钒(VOPc)分子及其纳米簇在高定向石墨(HOPG)表面的自组装. 在室温下, 将HOPG浸入含有VOPc纳米簇(2-20 nm)和VOPc分子(约为10-3 g·L-1)的1,2-二氯乙烷胶体溶液中, VOPc分子在HOPG表面自组装形成单分子层(SAM), VOPc纳米簇在上述SAM表面进行尺寸选择性自组装. 组装于VOPc单分子层表面的纳米簇的粒径为(4.60±0.47) nm. 扫描隧道显微镜研究表明, 随着酞菁氧钒胶体溶液浓度由2.5×10-2 g·L-1增至2.5×10-1 g·L-1, 组装于SAM表面的VOPc纳米粒子的数量逐渐增多, 最终形成稠密的单层粒子组装体. 本文提供的自组装结构及方法在发展光电功能体系等方面具有潜在应用价值. 相似文献
10.
立足于分子自组装单层膜的制备及结构, 讨论了分子自组装单层膜的头基基团与基底的作用机理、 主链与环境的温度依赖关系, 特别是其端基基团的化学性质及构象对表面浸润行为的影响. 重点讨论了分子自组装单层膜的端甲基基团对表面能的贡献、 极性端基基团与水分子之间的相互作用以及自组装单层膜表面的分子尺寸粗糙度对表面浸润的影响. 最后, 基于理论和实验基础对以上问题提出新的认知与看法, 并对未来该领域发展的机遇与挑战进行了展望. 相似文献
11.
Hoertz PG Niskala JR Dai P Black HT You W 《Journal of the American Chemical Society》2008,130(30):9763-9772
We report a simple, universal method for forming high surface coverage SAMs on ferromagnetic thin (< or =100 nm) films of Ni, Co, and Fe. Unlike previous reports, our technique is broadly applicable to different types of SAMs and surface types. Our data constitutes the first comprehensive examination of SAM formation on three different ferromagnetic surface types using two different surface-binding chemistries (thiol and isocyanide) under three different preparation conditions: (1) SAM formation on electroreduced films using a newly developed electroreduction approach, (2) SAM formation on freshly evaporated surfaces in the glovebox, and (3) SAM formation on films exposed to atmospheric conditions beforehand. The extent of SAM formation for all three conditions was probed by cyclic voltammetry for surfaces functionalized with either (11-thiolundecyl)ferrocene (Fc-(CH2) 11-SH) or (11-isocyanoundecyl)ferrocene (Fc-(CH2) 11-NC). SAM formation was also probed for straight-chain molecules, hexadecanethiol and hexadecaneisocyanide, with contact angle measurements, X-ray photoelectron spectroscopy, and reflection-absorption infrared spectroscopy (RAIRS). The results show that high surface coverage SAMs with low surface-oxide content can be achieved for thin, evaporated Ni and Co films using our electroreduction process with thiols. The extent of SAM formation on electroreduced films is comparable to what has been observed for SAMs/Au and to what we observe for SAMs/Ni, Co, and Fe samples prepared in the glovebox. 相似文献
12.
Electrochemistry and in situ electrochemical scanning tunneling microscopy (STM) were used to study the blocking and structural properties of Shiff base V-ape-V self-assembled monolayers (SAMs) on the surface of Au(111) in perchloric acid solution. The complex-plane impedance plots for the SAM covered Au(111) electrodes, with the redox couple of Fe(CN)64–/3– present in solution, exhibit arc shapes, revealing that the electrochemical kinetics were controlled by the electron-transfer step. For bare Au(111), the electrode process was mass transport limited. The molecules adsorb on Au(111) with a flat-lying orientation and form a long-range well-defined adlayer. A new structure of
was observed in the double-layer potential region. A structural model is proposed to interpret the molecular registry with Au(111) substrate. 相似文献
13.
Xingming Zeng Yi Hu Rongbin Xie Sadaf Bashir Khan Shern-Long Lee 《Molecules (Basel, Switzerland)》2021,26(24)
In recent years, extending self-assembled structures from two-dimensions (2D) to three-dimensions (3D) has been a paradigm in surface supramolecular chemistry and contemporary nanotechnology. Using organic molecules of p-terphenyl-3,5,3′,5′-tetracarboxylic acid (TPTC), and scanning tunneling microscopy (STM), we present a simple route, that is the control of the solute solubility in a sample solution, to achieve the vertical growth of supramolecular self-assemblies, which would otherwise form monolayers at the organic solvent/graphite interface. Presumably, the bilayer formations were based on π-conjugated overlapped molecular dimers that worked as nuclei to induce the yielding of the second layer. We also tested other molecules, including trimesic acid (TMA) and 1,3,5-tris(4-carboxyphenyl)-benzene (BTB), as well as the further application of our methodology, demonstrating the facile preparation of layered assemblies. 相似文献
14.
A novel strategy based on self-assembly technology was devised for design of photosensitive material as a ferroelectric liquid crystal (FLC) alignment layer. This development offers new tools for the study and control at the molecular level of the interaction of FLCs with solid surfaces. The photoreactive material was self-assembled to the substrate by covalent bond linkage due to a special chemical adsorption reaction. Through ester bond linkage, a cyano group with strong polarity was introduced to be terminus of the film. Under irradiation of linearly polarised ultraviolet light, an optically anisotropic self-assembled film was easily obtained. The irradiated film was demonstrated to result in homogenous alignment of FLC by optical transmittance measurements and polarising optical microscopy images of a FLC cell at different rotation angles. The alignment quality of the FLC on this self-assembled monolayer film is comparable to that of commercial rubbed polyimide film. Furthermore, it was also found that the fine alignment of the FLC may be related to the smoothness of the self-assembled film surface owing to its polar end. 相似文献
15.
Qiuhong Li Linlin Luo Xiaojie Yan Wenting Zhou Fang Wang 《Supramolecular chemistry》2013,25(5-6):358-362
The fluorescent microfibres with redox-responsive properties were prepared via the ionic self-assembly route from complexes of redox-responsive N,N-dimethylferrocenylmethylhexadecylammonium bromide and methyl orange dye molecule. The length of microfibres is from tens of micrometres to almost a millimetre and the width is about 500 mm to 2 μm. Steady state fluorescence spectroscopy shows strong fluorescent properties of the supramolecular self-assembled microfibres, which may have potential applications in electro-photo molecular switching device. 相似文献
16.
Dr. Tuan Anh Pham Dr. Fei Song Dr. Manh‐Thuong Nguyen Dr. Zheshen Li Florian Studener Prof. Meike Stöhr 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(17):5937-5944
The on‐surface polymerization of 1,3,6,8‐tetrabromopyrene (Br4Py) on Cu(111) and Au(111) surfaces under ultrahigh vacuum conditions was investigated by a combination of scanning tunneling microscopy (STM), X‐ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Deposition of Br4Py on Cu(111) held at 300 K resulted in a spontaneous debromination reaction, generating the formation of a branched coordination polymer network stabilized by C?Cu?C bonds. After annealing at 473 K, the C?Cu?C bonds were converted to covalent C?C bonds, leading to the formation of a covalently linked molecular network of short oligomers. In contrast, highly ordered self‐assembled two‐dimensional (2D) patterns stabilized by both Br?Br halogen and Br?H hydrogen bonds were observed upon deposition of Br4Py on Au(111) held at 300 K. Subsequent annealing of the sample at 473 K led to a dissociation of the C?Br bonds and the formation of disordered metal‐coordinated molecular networks. Further annealing at 573 K resulted in the formation of covalently linked disordered networks. Importantly, we found that the chosen substrate not only plays an important role as catalyst for the Ullmann reaction, but also influences the formation of different types of intermolecular bonds and thus, determines the final polymer network morphology. DFT calculations further support our experimental findings obtained by STM and XPS and add complementary information on the reaction pathway of Br4Py on the different substrates. 相似文献
17.
18.
Deposition features of Ni on self-assembled microtubule template from biolipid by electroless method 总被引:1,自引:0,他引:1
FU Yubin ZHANG Lide ZHENG Jiyong FU Shangang & ZHU Mingwei . Institute of Solid State Physics Chinese Academy of Sciences Hefei China . Luoyang Ship Material Research Institute Luoyang China . College of Life Science Henan Normal University Xinxiang China 《中国科学B辑(英文版)》2004,47(3):228-234
The self-assembly of lipid molecules is in close relationship with the structure and function of a cell membrane. A cell membrane has a variety of lipid molecules. Lipid molecules have their amphiphile na-tures, and their self-assembly can form a variety of thermodynamically stable microstructures, such as single-bilayer or multi-bilayer spherical and ellipsoidal liposome, microcylindrical and microtubular struc-tures[1]. These microstructures exhibit different bio-logical functions in living … 相似文献
19.
20.
Time- and collision energy-resolved surface-induced dissociation (SID) of des-Arg(1)- and des-Arg(9)-bradykinin on a fluorinated self-assembled monolayer (SAM) surface was studied by use of a novel Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) specially equipped to perform SID experiments. Time-resolved fragmentation efficiency curves (TFECs) were modeled by an RRKM-based approach developed in our laboratory that utilizes a very flexible analytical expression for the internal energy deposition function capable of reproducing both single- and multiple-collision activation in the gas phase and excitation by collisions with a surface. Both experimental observations and modeling establish a very sharp transition in the dynamics of ion-surface interaction: the shattering transition. The experimental signature for this transition is the appearance of prompt (time-independent) fragmentation, which becomes dominant at high collision energies. Shattering opens a variety of dissociation pathways that are not accessible to slow collisional and thermal ion activation. This results in much better sequence coverage for the singly protonated peptides than dissociation patterns obtained with any of the slow activation methods. Modeling demonstrated that, for short reaction delays, dissociation of these peptides is solely determined by shattering. Internal energies required for shattering transition are approximately the same for des-Arg(1) and des-Arg(9)-bradykinin, resulting in the overlap of fragmentation efficiency curves obtained at short reaction delays. At longer delay times, parent ions depletion is mainly determined by a slow decay rate and fragmentation efficiency curves for des-Arg(1) and des-Arg(9)-bradykinin diverge. Dissociation thresholds of 1.17 and 1.09 eV and activation entropies of -22.2 and -23.3 cal/(mol K) were obtained for des-Arg(1) and des-Arg(9)-bradykinin from RRKM modeling of time-resolved data. Dissociation parameters for des-Arg(1)-bradykinin are in good agreement with parameters derived from thermal experiments. However, there is a significant discrepancy between the thermal data and dissociation parameters for des-Arg(9)-bradykinin obtained in this study. The difference is attributed to the differences in conformations that undergo thermal activation and activation by ion-surface collisions prior to dissociation. 相似文献