首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We give the following theorem: Let D = (V, E) be a strongly (p + q + 1)-connected digraph with np + q + 1 vertices, where p and q are nonnegative integers, pn - 2, n ≥ 2. Suppose that, for each four vertices u, v, w, z (not necessarily distinct) such that {u, v} ∩ {w, z} = Ø, (w, u) ? E, (v, z) ? E, we have id(u) + od(v) + od(w + id(z) ≥ 2 (n + p + q)) + 1. Then D is strongly (p, q)-Hamiltonian.  相似文献   

2.
Let G be a simple graph with n vertices. For any v ? V(G){v \in V(G)} , let N(v)={u ? V(G): uv ? E(G)}{N(v)=\{u \in V(G): uv \in E(G)\}} , NC(G) = min{|N(u) èN(v)|: u, v ? V(G){NC(G)= \min \{|N(u) \cup N(v)|: u, v \in V(G)} and uv \not ? E(G)}{uv \not \in E(G)\}} , and NC2(G) = min{|N(u) èN(v)|: u, v ? V(G){NC_2(G)= \min\{|N(u) \cup N(v)|: u, v \in V(G)} and u and v has distance 2 in E(G)}. Let l ≥ 1 be an integer. A graph G on nl vertices is [l, n]-pan-connected if for any u, v ? V(G){u, v \in V(G)} , and any integer m with lmn, G has a (u, v)-path of length m. In 1998, Wei and Zhu (Graphs Combinatorics 14:263–274, 1998) proved that for a three-connected graph on n ≥ 7 vertices, if NC(G) ≥ n − δ(G) + 1, then G is [6, n]-pan-connected. They conjectured that such graphs should be [5, n]-pan-connected. In this paper, we prove that for a three-connected graph on n ≥ 7 vertices, if NC 2(G) ≥ n − δ(G) + 1, then G is [5, n]-pan-connected. Consequently, the conjecture of Wei and Zhu is proved as NC 2(G) ≥ NC(G). Furthermore, we show that the lower bound is best possible and characterize all 2-connected graphs with NC 2(G) ≥ n − δ(G) + 1 which are not [4, n]-pan-connected.  相似文献   

3.
Given positive integers m, k, and s with m > ks, let Dm,k,s represent the set {1, 2, …, m} − {k, 2k, …, sk}. The distance graph G(Z, Dm,k,s) has as vertex set all integers Z and edges connecting i and j whenever |ij| ∈ Dm,k,s. The chromatic number and the fractional chromatic number of G(Z, Dm,k,s) are denoted by χ(Z, Dm,k,s) and χf(Z, Dm,k,s), respectively. For s = 1, χ(Z, Dm,k,1) was studied by Eggleton, Erdős, and Skilton [6], Kemnitz and Kolberg [12], and Liu [13], and was solved lately by Chang, Liu, and Zhu [2] who also determined χf(Z, Dm,k,1) for any m and k. This article extends the study of χ(Z, Dm,k,s) and χf(Z, Dm,k,s) to general values of s. We prove χf(Z, Dm,k,s) = χ(Z, Dm,k,s) = k if m < (s + 1)k; and χf(Z, Dm,k,s) = (m + sk + 1)/(s + 1) otherwise. The latter result provides a good lower bound for χ(Z, Dm,k,s). A general upper bound for χ(Z, Dm,k,s) is obtained. We prove the upper bound can be improved to ⌈(m + sk + 1)/(s + 1)⌉ + 1 for some values of m, k, and s. In particular, when s + 1 is prime, χ(Z, Dm,k,s) is either ⌈(m + sk + 1)/(s + 1)⌉ or ⌈(m + sk + 1)/(s + 1)⌉ + 1. By using a special coloring method called the precoloring method, many distance graphs G(Z, Dm,k,s) are classified into these two possible values of χ(Z, Dm,k,s). Moreover, complete solutions of χ(Z, Dm,k,s) for several families are determined including the case s = 1 (solved in [2]), the case s = 2, the case (k, s + 1) = 1, and the case that k is a power of a prime. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 245–259, 1999  相似文献   

4.
5.
Let E,F be two Banach spaces,B(E,F),B+(E,F),Φ(E,F),SΦ(E,F) and R(E,F) be bounded linear,double splitting,Fredholm,semi-Frdholm and finite rank operators from E into F,respectively. Let Σ be any one of the following sets:{T ∈Φ(E,F):Index T=constant and dim N(T)=constant},{T ∈ SΦ(E,F):either dim N(T)=constant< ∞ or codim R(T)=constant< ∞} and {T ∈ R(E,F):Rank T=constant< ∞}. Then it is known that Σ is a smooth submanifold of B(E,F) with the tangent space TAΣ={B ∈ B(E,F):BN(A)-R(A) } for any A ∈Σ. However,for ...  相似文献   

6.
We apply the Five Functionals Fixed Point Theorem to verify the existence of at least three positive pseudo-symmetric solutions for the discrete three point boundary value problem, ?(g(?u(t-1)))+a(t))f(u(t))=0, for t∈{a+1,…,b+1} and u(a)=0 with u(v)=u(b+2) where g(v)=|v| p-2 v, p>1, for some fixed v∈{a+1,…,b+1} and σ=(b+2+v)/2 is an integer.  相似文献   

7.
Let a and b be integers with b ? a ? 0. A graph G is called an [a,b]-graph if a ? dG(v) ? b for each vertex vV(G), and an [a,b]-factor of a graph G is a spanning [a,b]-subgraph of G. A graph is [a,b]-factorable if its edges can be decomposed into [a,b]-factors. The purpose of this paper is to prove the following three theorems: (i) if 1 ? b ? 2a, every [(12a + 2)m + 2an,(12b + 4)m + 2bn]-graph is [2a, 2b + 1]-factorable; (ii) if b ? 2a ?1, every [(12a ?4)m + 2an, (12b ?2)m + 2bn]-graph is [2a ?1,2b]-factorable; and (iii) if b ? 2a ?1, every [(6a ?2)m + 2an, (6b + 2)m + 2bn]-graph is [2a ?1,2b + 1]-factorable, where m and n are nonnegative integers. They generalize some [a,b]-factorization results of Akiyama and Kano [3], Kano [6], and Era [5].  相似文献   

8.
Let R be a ring with identity, M a right R-module and S = End R (M). In this note, we introduce S-semicommutative, S-Baer, S-q.-Baer and S-p.q.-Baer modules. We study the relations between these classes of modules. Also we prove if M is an S-semicommutative module, then M is an S-p.q.-Baer module if and only if M[x] is an S[x]-p.q.-Baer module, M is an S-Baer module if and only if M[x] is an S[x]-Baer module, M is an S-q.-Baer module if and only if M[x] is an S[x]-q.-Baer module.  相似文献   

9.
Tutte defined a k-separation of a matroid M to be a partition (A,B) of the ground set of M such that |A|,|B|k and r(A)+r(B)−r(M)<k. If, for all m<n, the matroid M has no m-separations, then M is n-connected. Earlier, Whitney showed that (A,B) is a 1-separation of M if and only if A is a union of 2-connected components of M. When M is 2-connected, Cunningham and Edmonds gave a tree decomposition of M that displays all of its 2-separations. When M is 3-connected, this paper describes a tree decomposition of M that displays, up to a certain natural equivalence, all non-trivial 3-separations of M.  相似文献   

10.
A smooth graph is a connected graph without endpoints; f(n, q) is the number of connected graphs, v(n, q) is the number of smooth graphs, and u(n, q) is the number of blocks on n labeled points and q edges: Wk, Vk, and Uk are the exponential generating functions of f(n, n + k), v(n, n + k), and u(n, n + k), respectively. For any k ? 1, our reduction method shows that Vk can be deduced at once from Wk, which was found for successive k by the computer method described in our previous paper. Again the reduction method shows that Uk must be a sum of powers (mostly negative) of 1 - X and, given this information, we develop a recurrence method well suited to calculate Uk for successive k. Exact formulas for v(n, n + k) and u(n, n + k) for general n follow at once.  相似文献   

11.
Let S(r) denote a circle of circumference r. The circular consecutive choosability chcc(G) of a graph G is the least real number t such that for any r≥χc(G), if each vertex v is assigned a closed interval L(v) of length t on S(r), then there is a circular r‐coloring f of G such that f(v)∈L(v). We investigate, for a graph, the relations between its circular consecutive choosability and choosability. It is proved that for any positive integer k, if a graph G is k‐choosable, then chcc(G)?k + 1 ? 1/k; moreover, the bound is sharp for k≥3. For k = 2, it is proved that if G is 2‐choosable then chcc(G)?2, while the equality holds if and only if G contains a cycle. In addition, we prove that there exist circular consecutive 2‐choosable graphs which are not 2‐choosable. In particular, it is shown that chcc(G) = 2 holds for all cycles and for K2, n with n≥2. On the other hand, we prove that chcc(G)>2 holds for many generalized theta graphs. © 2011 Wiley Periodicals, Inc. J Graph Theory 67: 178‐197, 2011  相似文献   

12.
Let G be a connected graph and η(G)=Sz(G)−W(G), where W(G) and Sz(G) are the Wiener and Szeged indices of G, respectively. A well-known result of Klav?ar, Rajapakse, and Gutman states that η(G)≥0, and by a result of Dobrynin and Gutman η(G)=0 if and only if each block of G is complete. In this paper, a path-edge matrix for the graph G is presented by which it is possible to classify the graphs in which η(G)=2. It is also proved that there is no graph G with the property that η(G)=1 or η(G)=3. Finally, it is proved that, for a given positive integer k,k≠1,3, there exists a graph G with η(G)=k.  相似文献   

13.
A graph G is co-connected if both G and its complement ? are connected and nontrivial. For two graphs A and B, the connected Ramsey number rc(A, B) is the smallest integer n such that there exists a co-connected graph of order n, and if G is a co-connected graph on at least n vertices, then A ? G or B ? ?. If neither A or B contains a bridge, then it is known that rc(A, B) = r(A, B), where r(A, B) denotes the usual Ramsey number of A and B. In this paper rc(A, B) is calculated for some pairs (A, B) when r(A, B) is known and at least one of the graphs A or B has a bridge. In particular, rc(A, B) is calculated for A a path and B either a cycle, star, or complete graph, and for A a star and B a complete graph.  相似文献   

14.
Let R be a prime ring, U the Utumi quotient ring of R, C = Z(U) the extended centroid of R, L a non-central Lie ideal of R, H and G non-zero generalized derivations of R. Suppose that there exists an integer n ≥ 1 such that (H(u)uuG(u)) n = 0, for all uL, then one of the following holds: (1) there exists cU such that H(x) = xc, G(x) = cx; (2) R satisfies the standard identity s 4 and char (R) = 2; (3) R satisfies s 4 and there exist a, b, cU, such that H(x) = ax+xc, G(x) = cx+xb and (a − b) n = 0.  相似文献   

15.
The following results for proper quasi‐symmetric designs with non‐zero intersection numbers x,y and λ > 1 are proved.
  • (1) Let D be a quasi‐symmetric design with z = y ? x and v ≥ 2k. If x ≥ 1 + z + z3 then λ < x + 1 + z + z3.
  • (2) Let D be a quasi‐symmetric design with intersection numbers x, y and y ? x = 1. Then D is a design with parameters v = (1 + m) (2 + m)/2, b = (2 + m) (3 + m)/2, r = m + 3, k = m + 1, λ = 2, x = 1, y = 2 and m = 2,3,… or complement of one of these design or D is a design with parameters v = 5, b = 10, r = 6, k = 3, λ = 3, and x = 1, y = 2.
  • (3) Let D be a triangle free quasi‐symmetric design with z = y ? x and v ≥ 2k, then xz + z2.
  • (4) For fixed z ≥ 1 there exist finitely many triangle free quasi‐symmetric designs non‐zero intersection numbers x, y = x + z.
  • (5) There do not exist triangle free quasi‐symmetric designs with non‐zero intersection numbers x, y = x + 2.
© 2006 Wiley Periodicals, Inc. J Combin Designs 15: 49–60, 2007  相似文献   

16.
The subgroups E(m,R) ⊗ E(n,R) ≤ HG = GL(mn,R) are studied under the assumption that the ring R is commutative and m, n ≥ 3. The group GL m ⊗GL n is defined by equations, the normalizer of the group E(m,R) ⊗ E(n,R) is calculated, and with each intermediate subgroup H it is associated a uniquely determined lower level (A,B,C), where A,B,C are ideals in R such that mA,A 2BA and nA,A 2CA. The lower level specifies the largest elementary subgroup satisfying the condition E(m, n,R, A,B,C) ≤ H. The standard answer to this problem asserts that H is contained in the normalizer N G (E(m,n,R, A,B,C)). Bibliography: 46 titles.  相似文献   

17.
A t‐wise balanced design ( at BD) of order v and block sizes from K , denoted by S ( t , K , v ), is a pair ( X , ??), where X is a v ‐element set and ?? is a set of subsets of X , called blocks , with the property that | B |∈ K for any B ∈?? and every t ‐element subset of X is contained in a unique block. In this article, we shall show that there is an S ( 3 , { 4 , 5 , 7 }, v ) for any positive integer v ≡ 7 ( mod12 ) with v ≠ 19 . Copyright © 2011 Wiley Periodicals, Inc. J Combin Designs 20:68–80, 2012  相似文献   

18.
There are two kinds of perfect t-deletion-correcting codes of length k over an alphabet of size v, those where the coordinates may be equal and those where all coordinates must be different. We call these two kinds of codes T*(k − t, k, v)-codes and T(k − t, k, v)-codes respectively. The cardinality of a T(k − t, k, v)-code is determined by its parameters, while T*(k − t, k, v)-codes do not necessarily have a fixed size. Let N(k − t, k, v) denote the maximum number of codewords in any T*(k − t, k, v)-code. A T*(k − t, k, v)-code with N(k − t, k, v) codewords is said to be optimal. In this paper, some combinatorial constructions for optimal T*(2, k, v)-codes are developed. Using these constructions, we are able to determine the values of N(2, 4, v) for all positive integers v. The values of N(2, 5, v) are also determined for almost all positive integers v, except for v = 13, 15, 19, 27 and 34.   相似文献   

19.
A digraph G = (V, E) is primitive if, for some positive integer k, there is a uv walk of length k for every pair u, v of vertices of V. The minimum such k is called the exponent of G, denoted exp(G). The exponent of a vertex uV, denoted exp(u), is the least integer k such that there is a uv walk of length k for each vV. For a set XV, exp(X) is the least integer k such that for each vV there is a Xv walk of length k, i.e., a uv walk of length k for some uX. Let F(G, k) : = max{exp(X) : |X| = k} and F(n, k) : = max{F(G, k) : |V| = n}, where |X| and |V| denote the number of vertices in X and V, respectively. Recently, B. Liu and Q. Li proved F(n, k) = (nk)(n − 1) + 1 for all 1 ≤ kn − 1. In this article, for each k, 1 ≤ kn − 1, we characterize the digraphs G such that F(G, k) = F(n, k), thereby answering a question of R. Brualdi and B. Liu. We also find some new upper bounds on the (ordinary) exponent of G in terms of the maximum outdegree of G, Δ+(G) = max{d+(u) : uV}, and thus obtain a new refinement of the Wielandt bound (n − 1)2 + 1. © 1998 John Wiley & Sons, Inc. J. Graph Theory 28: 215–225, 1998  相似文献   

20.
For the non-negative integerg let (M, g) denote the closed orientable 2-dimensional manifold of genusg. K-realizationsP of (M, g) are geometric cell-complexes inP with convex facets such that set (P) is homeomorphic toM. ForK-realizationsP of (M, g) and verticesv ofP, val (v,P) denotes the number of edges ofP incident withv and the weighted vertex-number Σ(val(v, P)-3) taken over all vertices ofP is called valence-valuev (P) ofP. The valence-functionalV, which is important for the determination of all possiblef-vectors ofK-realisations of (M, g), in connection with Eberhard's problem etc., is defined byV(g):=min[v(P)|P is aK-realization of (M,g)]. The aim of the note is to prove the inequality 2g+1≦V(g)≦3g+3 for every positive integerg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号