首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An empirical relationship is developed to predict tensile strength of the laser beam welded AZ31B magnesium alloy by incorporating process parameters such as laser power, welding speed and focal position. The experiments were conducted based on a three factor, three level, central composite face centered design matrix with full replications technique. The empirical relationship can be used to predict the tensile strength of laser beam welded AZ31B magnesium alloy joints at 95% confidence level. The results indicate that the welding speed has the greatest influence on tensile strength, followed by laser power and focal position.  相似文献   

2.
Laser welding input parameters play a very significant role in determining the quality of a weld joint. The joint quality can be defined in terms of properties such as weld bead geometry, mechanical properties and distortion. Therefore, mechanical properties should be controlled to obtain good welded joints. In this study, the weld bead geometry such as depth of penetration (DP), bead width (BW) and tensile strength (TS) of the laser welded butt joints made of AISI 904L super austenitic stainless steel were investigated. Full factorial design was used to carry out the experimental design. Artificial Neural networks (ANN) program was developed in MatLab software to establish the relationships between the laser welding input parameters like beam power, travel speed and focal position and the three responses DP, BW and TS in three different shielding gases (Argon, Helium and Nitrogen). The established models were used for optimizing the process parameters using Genetic Algorithm (GA). Optimum solutions for the three different gases and their respective responses were obtained. Confirmation experiment has also been conducted to validate the optimized parameters obtained from GA.  相似文献   

3.
In the present work, a study is made to investigate the effects of process parameters, namely, laser power, welding speed, size of the laser beam and clamp pressure, on the lap-shear strength and weld-seam width for laser transmission welding of acrylic (polymethyl methacrylate), using a diode laser system. Response surface methodology (RSM) is employed to develop mathematical relationships between the welding process parameters and the output variables of the weld joint to determine the welding input parameters that lead to the desired weld quality. In addition, using response surface plots, the interaction effects of process parameters on the responses are analyzed and discussed. The statistical software Design-Expert v7 is used to establish the design matrix and to obtain the regression equations. The developed mathematical models are tested by analysis-of-variance (ANOVA) method to check their adequacy. Finally, a comparison is made between measured and calculated results, which are in good agreement. This indicates that the developed models can predict the responses adequately within the limits of welding parameters being used.  相似文献   

4.
In this research work, a statistical analysis of the CO2 laser beam welding of dual phase (DP600)/transformation induced plasticity (TRIP700) steel sheets was done using response surface methodology. The analysis considered the effect of laser power (2–2.2 kW), welding speed (40–50 mm/s) and focus position (?1 to 0 mm) on the heat input, the weld bead geometry, uniaxial tensile strength, formability limited dome height and welding operation cost. The experimental design was based on Box–Behnken design using linear and quadratic polynomial equations for predicting the mathematical models. The results indicate that the proposed models predict the responses adequately within the limits of welding parameters being used and the welding speed is the most significant parameter during the welding process.  相似文献   

5.
This paper presents a pulsed Nd: YAG laser-robot system for spot and seam welding of mild steel sheets. The study evaluates the laser beams behaviour for welding, and then investigates pulsed Nd: YAG laser spot and seam welding processes. High pulse power intensity is needed to initiate the key-hole welding process and a threshold pulse energy to reach full penetration. In seam welding, a weld consists of successive overlapping spots. Both high pulse energy and high average power are needed to keep the key-hole welding going. A 70% overlap is used to define overlapping spot welding as seam welding and to optimize process parameters because a high tensile strength joint compatible with the strength of the base material can be obtained when the overlap is ≥70%; at the same time a smooth seam with full penetration is obtained. In these cases, the joints in pulsed Nd: YAG laser welding are comparable in strength to those obtained with CO2 laser welding. Robot positioning and motion accuracies can meet the demands of Nd: YAG laser sheet metal welding, but its cornering accuracy affects the welding processes. The purpose of the study is to evaluate the YAG laser-robot system for production in the automotive industry.  相似文献   

6.
The paper presented some useful results of deep-penetration laser welding of high-strength galvanized steel sheets, which had been carried out by a self-made CO2 laser unit with maximum power output of 1.5 kW. The workpieces of high-strength galvanized automobile steels with thickness of 1.5 mm were butt-welded with argon as the shielding gas. The effects of such factors as laser power, welding speed, focal position, shielding gas and zinc vaporization on the quality of welds are investigated. With the processing parameters optimized and the proper shielding gas used in both coaxial and side-blow direction, most of the defects, such as pores, cracks and softening in HAZ, can be avoided in laser welding joints. The microstructure, the hardness distribution and the elemental distribution in the welding joints can be changed due to laser heating and recrystallization. In order to determine the mechanical properties of the welding joints, the static tensile strength was tested. Experimental results indicated that both the strength and microhardness of welding joints were higher than those of the base metal. Consequently, the welding quality is reliable for manufacturing of automobile bodies.  相似文献   

7.
A central composite rotatable experimental design (CCRD) was used to plan the experiment of laser transmission joining of thermoplastic. Response surface methodology (RSM) was employed to establish the mathematical relationships between the joining process parameters (laser power, joining velocity, clamp pressure, scanning number) and the three responses (the joint strength, joint width and joint cost) and then the optimization capabilities in design-expert software were used to carry out the multi-objective optimization of the joining process. In this paper, the models were tested for adequacy using analysis of variance, the predicted errors were calculated, the effects of joining process parameters were determined, and the optimal conditions were identified. It is demonstrated that the predicted results of the optimization are in good agreement with the experimental results, so this study provides an effective instruction to enhance the joint quality and minimize the joint cost.  相似文献   

8.
For the packaging of a pump laser in butterfly package, the most crucial assembly step is the fiber-to-laser diode coupling and attachment. The use of laser welding as the joining method offers several advantages if compared with the adhesive joints: strong joining strength, short process time and less contamination. This paper reports on laser welding process characteristics; weld strength and its fracture mode. The penetration depth and melt area of laser spot welds were found to be complicated functions of laser pulse energy, intensity, and beam diameter. Effects of pulse width, input power and size of the focal spot on the rate of energy input to the workpieces and consequently, the weld strength were reported. The weld strength was found to be dependent on the overlapping area between the two joining materials. Surface roughness, Ra, has influence on the fraction of energy absorbed, A, and therefore, affecting the penetration depth. Thermal analysis was carried out on the laser-welded joints and its heat-affected zone (HAZ) induced by various power densities was examined. These data are important in order to optimize and utilize the laser welding process as an effective manufacturing tool for fabrication of reliable pump laser.  相似文献   

9.
This paper presents an experimental design approach to process parameter optimization for the laser welding of martensitic AISI 416 and AISI 440FSe stainless steels in a constrained overlap configuration in which outer shell was 0.55 mm thick. To determine the optimal laser-welding parameters, a set of mathematical models were developed relating welding parameters to each of the weld characteristics. These were validated both statistically and experimentally. The quality criteria set for the weld to determine optimal parameters were the minimization of weld width and the maximization of weld penetration depth, resistance length and shearing force. Laser power and welding speed in the range 855–930 W and 4.50–4.65 m/min, respectively, with a fiber diameter of 300 μm were identified as the optimal set of process parameters. However, the laser power and welding speed can be reduced to 800–840 W and increased to 4.75–5.37 m/min, respectively, to obtain stronger and better welds.  相似文献   

10.
采用配方均匀设计法,配制了SiO2-MnO2-CaO-TiO2-CaF2-NaF多组元活性剂,利用微型脉冲激光器对500 m厚GH4169高温合金进行了活性剂激光焊接试验。分析并讨论了焊接接头的显微组织和力学性能。试验结果表明,与传统激光焊相比,所配制的20种活性剂均增加了焊缝熔深,并且其中F12系混合活性剂增加熔深能力最为显著,使焊缝深宽比增加了159%,证明通过使用活性剂来增加微激光焊焊缝熔深,降低高温合金板激光焊接的成本是可行的。在活性剂作用下,焊缝显微组织仍由柱状晶和等轴晶组成,接头抗拉强度达到927 MPa,为母材强度的92.7%。  相似文献   

11.
In this work thin sheets of Ti–6Al–4V were full penetration welded using a 5 kW fibre laser in order to evaluate the effectiveness of high power fibre laser as a welding processing tool for welding Ti–6Al–4V with the requirements of the aircraft industry and to determine the effect of welding parameters including laser power, welding speed and beam focal position on the weld microstructure, bead profile and weld quality. It involved establishing an understanding of the influence of welding parameters on microstructural change, welding defects, and the characteristics of heat affected zone (HAZ) and weld metal (WM) of fibre laser welded joints. The optimum range of welding parameters which produced welds without cracking and porosity were identified. The influence of the welding parameters on the weld joint heterogeneity was characterised by conducting detailed microstructural analysis.  相似文献   

12.
The microstructural characteristics and mechanical properties, including micro-hardness, tensile properties, three-point bending properties and Charpy impact toughness at different test temperatures of 8 mm thick S960 high strength steel plates were investigated following their joining by multi-pass ultra-narrow gap laser welding (NGLW) and gas metal arc welding (GMAW) techniques. It was found that the microstructure in the fusion zone (FZ) for the ultra-NGLW joint was predominantly martensite mixed with some tempered martensite, while the FZ for the GMAW joint was mainly consisted of ferrite with some martensite. The strength of the ultra-NGLW specimens was comparable to that of the base material (BM), with all welded specimens failed in the BM in the tensile tests. The tensile strength of the GMAW specimens was reduced approximately by 100 MPa when compared with the base material by a broad and soft heat affected zone (HAZ) with failure located in the soft HAZ. Both the ultra-NGLW and GMAW specimens performed well in three-point bending tests. The GMAW joints exhibited better impact toughness than the ultra-NGLW joints.  相似文献   

13.
Super duplex stainless steel (SDSS), an advanced duplex stainless steel with higher alloying concentration, is employed widely in acidic atmospheres. In this study, we make an attempt to develop a process window for the pulsed mode Nd:YAG laser welding of SDSS, as reference maps, to identify the range of process parameters viz., laser power, welding speed, defocusing distance, and pulse frequency for obtaining a defect free full penetration welds. The eminence of the welds, based on the macrostructure, microstructure, and tensile strength, is reported. We obtain a complete penetration weld devoid of undercut, crating at the top and minimum heat affected zone (HAZ) with a overlapping factor of 80–90% and heat input at 100–200 J/mm. The experimental settings prevailing inside the preferred region of the process window exhibit a higher tensile strength as well.  相似文献   

14.
The lap welding of JSC270CC steel and A6111-T4 aluminum alloys were carried out by a dual-beam YAG laser with the continuous wave (CW) and pulse wave (PW) modes. The microstructure of the welded joints were examined with SEM, EPMA while the properties were checked with microhardness tester and tensile testing machine. It was shown that the dual-beam laser welding can effectively reduce or avoid the formation of the blowholes in the welded joints. The PW laser beam penetrated the welding pool, leading to the root-shape structures with enhanced bonding strength at the weld interface. A 10 μm intermetallic compound (IMC) layer was generated at the interface. The shearing strength of lap joint was measured to be 128 MPa.  相似文献   

15.
Absorber-free transmission and butt-welding of different polymers were performed using thulium fiber laser radiation at the wavelength 2 μm. The relations between the laser process conditions and the dimensions and quality of the seam were investigated by means of optical and phase-contrast microscopy. Mechanical properties of the weld joints were studied in tensile strength tests. Laser-welded polyethylene samples revealed a tensile strength of greater than 80% of the bulk material strength. Transmission welding of different polymer combinations featured the formation of different joint classes depending on the spectral properties. The experiments demonstrate new application areas of mid-IR fiber laser sources for materials processing.  相似文献   

16.
Generally, the quality of a weld joint is directly influenced by the welding input parameter settings. Selection of proper process parameters is important to obtain the desired weld bead profile and quality. In this research work, numerical and graphical optimization techniques of the CO2 laser beam welding of dual phase (DP600)/transformation induced plasticity (TRIP700) steel sheets were carried out using response surface methodology (RSM) based on Box–Behnken design. The procedure was established to improve the weld quality, increase the productivity and minimize the total operation cost by considering the welding parameters range of laser power (2–2.2 kW), welding speed (40–50 mm/s) and focus position (?1 to 0 mm). It was found that, RSM can be considered as a powerful tool in experimental welding optimization, even when the experimenter does not have a model for the process. Strong, efficient and low cost weld joints could be achieved using the optimum welding conditions.  相似文献   

17.
5083铝合金光纤激光-TIG复合焊接工艺研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用IPG YLS-6000光纤激光器和Fronius MagicWave3000job数字化焊机,对4mm厚5083H116铝合金进行了复合焊接试验。研究了电源特性、电流大小和热源间距等工艺参数对光纤激光-钨极惰性气体保护焊(TIG)复合焊接焊缝成形的影响规律,并分析了焊接接头的缺陷、显微硬度及力学性能。结果表明,光纤激光-TIG复合焊接5083铝合金,能够明显改善焊缝成形,提高焊接过程稳定性,特别是与变极性TIG电弧复合效果更为显著;光纤激光与变极性TIG电弧复合焊接,采用激光在前的方式,电弧电流150A,且热源间距不大于4mm,可以得到具有明亮金属光泽和均匀鱼鳞纹的焊缝,焊缝无气孔和裂纹缺陷,其表面有少量的下凹;复合焊接接头抗拉强度为318MPa,达到母材强度的93%,延伸率为7.6%,高于单光纤激光焊接,断口分析为韧性断裂。  相似文献   

18.
Laser joining parameters play a very significant role in determining the quality of laser transmission joining between PET films and 316L stainless steel plates. In the present work, Laser power, joining speed and stand-off-distance were considered as joining parameters. The parameters that influence the quality of laser transmission joining were optimized using response methodology for achieving good joint strength and minimal joint width. The central composite second-order Rotational Design (CCRD) has been utilized to plan the experiments and response surface methodology (RSM) is employed to develop mathematical relationships between joining parameters and desired responses. Based on the developed mathematical models, the interaction effects of the process parameters on laser transmission joining were investigated and optimum joining parameters were achieved. The experimental values nearly agree with the predicted values from mathematical models, indicates that the models can predict the responses adequately and optimize the key process parameters quickly.  相似文献   

19.
Plated copper alloys are widely used in electron industry. The plating lay caused the farther decreasing of the welding property of copper alloys, whose intrinsic weldability was poor. In this paper, the bronze and brass specimens with nickel-tin double plating layer were joined by resistance spot welding method. The microstructure and peel strength of the joints were investigated. The experiment results show that a sandwich-like structure was obtained in the faying surface after welding, and the nickel plating layer thickness had severe effect on the reliability of the joints.  相似文献   

20.
Present investigation reports on the effects of incorporating pre- and post-heating on the mechanical properties of laser-welded joints, in normal air condition. Two common types of steels, i.e. mild steel, and stainless steel were welded with Lumonic's MS 830 Nd3+:YAG laser machine, with an output capacity of 400 W. Due to the low integrated energy input required for laser welded joints, the welded region are often cooled too rapidly via conduction to the surrounding material and atmosphere, which leads to hardness discontinuities in the fusion and heat affected zone. The effects of in-process laser annealing on the mechanical properties and microstructure of laser-welded joints are important in any manufacturing operation. To improve the poor weld characteristics, this work investigates the use of automated dual-beam delivery system to implement a pre- or post-heating technique, simultaneously with the welding process. The results show that proper selection of the control parameters for the pre- or post-heating can reduce the hardness of the weld significantly and improve the welded joints mechanical properties, such as higher tensile strength and better durability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号