首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study a model of complex band random matrices capable of describing the transitions between three different ensembles of Hermitian matrices: Gaussian orthogonal, Gaussian unitary and Poissonian. Analyzing numerical data we observe new scaling relations based on the generalized localization length of eigenvectors. We show that during transitions between canonical ensembles of random matrices the changes of statistical properties of eigenvalues and eigenvectors are correlated.  相似文献   

2.
3.
This Letter proposes an approach to identify the topological structure and unknown parameters for uncertain general complex networks simultaneously. By designing effective adaptive controllers, we achieve synchronization between two complex networks. The unknown network topological structure and system parameters of uncertain general complex dynamical networks are identified simultaneously in the process of synchronization. Several useful criteria for synchronization are given. Finally, an illustrative example is presented to demonstrate the application of the theoretical results.  相似文献   

4.
It is commonly accepted that realistic networks can display not only a complex topological structure, but also a heterogeneous distribution of connection weights. In addition, time delay is inevitable because the information spreading through a complex network is characterized by the finite speeds of signal transmission over a distance. Weighted complex networks with coupling delays have been gaining increasing attention in various fields of science and engineering. Some of the topics of most concern in the field of weighted complex networks are finding how the synchronizability depends on various parameters of the network including the coupling strength, weight distribution and delay. On the basis of the theory of asymptotic stability of linear time-delay systems with complex coefficients, the synchronization stability of weighted complex dynamical networks with coupling delays is investigated, and simple criteria are obtained for both delay-independent and delay-dependent stabilities of the synchronization state. Finally, an example is given as an illustration testing the theoretical results.  相似文献   

5.
We consider nearest-neighbor spacing distributions of composite ensembles of levels. These are obtained by combining independently unfolded sequences of levels containing only few levels each. Two problems arise in the spectral analysis of such data. One problem lies in fitting the nearest-neighbor spacing distribution to the histogram of level spacings obtained from the data. We show that the method of Bayesian inference is superior to this procedure. The second problem occurs when one unfolds such short sequences. We show that the unfolding procedure generically leads to an overestimate of the chaoticity parameter. This trend is absent in the presence of long-range level correlations. Thus, composite ensembles of levels from a system with long-range spectral stiffness yield reliable information about the chaotic behavior of the system.  相似文献   

6.
7.
Yanhong Zhao 《Physics letters. A》2008,372(48):7165-7171
This Letter investigates projective synchronization between the drive system and response complex dynamical system. An impulsive control scheme is adapted to synchronize the drive-response dynamical system to a desired scalar factor. By using the stability theory of the impulsive differential equation, the criteria for the projective synchronization are derived. The feasibility of the impulsive control of the projective synchronization is demonstrated in the drive-response dynamical system.  相似文献   

8.
Complex dynamical networks are being studied across many fields of science and engineering today. The issue of controlling a network to the desired state has attracted increasing attention. In this Letter, we investigate the problem of pinning a complex dynamical network to the solution of an uncoupled system. Our strategy is to apply impulsive control to a small fraction of network nodes. Based on the Lyapunov stability theory, we prove that the theoretical results derived here are effective. In addition, a B-A scale-free network with 20 nodes is taken for illustration and verification.  相似文献   

9.
The effects of small sample sizes on the statistical analysis of eigenvalue distributions were analyzed numerically. The behavior of the nearest-neighbor spacing distribution, the 3 statistic, and the linear correlation coefficient between adjacent spacings was studied, and the effects of missing or spurious levels and of unfolding an energy-dependent level density were explored. For small sample sizes the nearest-neighbor spacing distribution appears to be the most reliable of these three statistics.We wish to thank T. Guhr for his computer code to calculate GOE spectra and T. von Egidy for discussions concerning the energy dependence of level densities. This work was supported in part by the US Department of Energy under Grant Nos. DE-FG05-87ER40353 and DE-FG05-88ER40441.  相似文献   

10.
Since the Laplacian matrices of weighted networks usually have complex eigenvalues, the problem of complex synchronized regions should be investigated carefully. The present Letter addresses this important problem by converting it to a matrix stability problem with respect to a complex parameter, which gives rise to several types of complex synchronized regions, including bounded, unbounded, disconnected, and empty regions. Because of the existence of disconnected synchronized regions, the convexity characteristic of stability for matrix pencils is further discussed. Then, some efficient methods for designing local feedback controllers and inner-linking matrices to enlarge the synchronized regions are developed and analyzed. Finally, a weighted network of smooth Chua's circuits is presented as an example for illustration.  相似文献   

11.
The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has made measurements of event-by-event fluctuations in the charged-particle multiplicity as a function of collision energy, centrality, collision species, and transverse momentum in several heavy-ion collision systems. It is observed that the fluctuations in terms of σ 2/μ 2 exhibit a universal power law scaling as a function of Nparticipants that is independent of the transverse momentum range of the measurement.  相似文献   

12.
Hongwu Tang  Liang Chen  Chi K. Tse 《Physica A》2008,387(22):5623-5630
This paper addresses the theoretical analysis of synchronization between two complex networks with nonidentical topological structures. By designing effective adaptive controllers, we achieve synchronization between two complex networks. Both the cases of identical and nonidentical network topological structures are considered and several useful criteria for synchronization are given. Illustrative examples are presented to demonstrate the application of the theoretical results.  相似文献   

13.
Jianshe Wu 《Physica A》2007,386(1):469-480
Based on a general complex dynamical network model with nonsymmetric coupling, some criteria for synchronization are proposed based on the approach of state observer design. Unlike the nonobserver-based dynamical networks, where the coupling between two connected nodes is defined by an inner coupling matrix and full state coupling is typically needed, in this paper, smaller amount of coupling variables or even only a scalar output signal of each node is needed to synchronize the network. Unlike the commonly researched complex network model, where the coupling between nodes is symmetric, here, in our network model, the coupling configuration matrix is not assumed to be symmetric and may have complex eigenvalues. The matrix Jordan canonical formalization method is used instead of the matrix diagonalization method, so in our synchronization criteria, the coupling configuration matrix is not required to be diagonalizable. Especially, the proposed step-by-step approach is simpler in computation than the existent ones, which usually rely heavily on numerical toolbox, and may be done by hand completely. An example is given to illustrate the step-by-step approach, in which each node is a two-dimensional dynamical limit cycle oscillator system consisting of a two-cell cellular neural network, and numerical simulations are also done to verify the results of design.  相似文献   

14.
Jianshe Wu  Licheng Jiao 《Physica A》2007,386(1):513-530
A new general complex delayed dynamical network model with nonsymmetric coupling is introduced, and then we investigate its synchronization phenomena. Several synchronization criteria for delay-independent and delay-dependent synchronization are provided which generalize some previous results. The matrix Jordan canonical formalization method is used instead of the matrix diagonalization method, so in our synchronization criteria, the coupling configuration matrix of the network does not required to be diagonalizable and may have complex eigenvalues. Especially, we show clearly that the synchronizability of a delayed dynamical network is not always characterized by the second-largest eigenvalue even though all the eigenvalues of the coupling configuration matrix are real. Furthermore, the effects of time-delay on synchronizability of networks with unidirectional coupling are studied under some typical network structures. The results are illustrated by delayed networks in which each node is a two-dimensional limit cycle oscillator system consisting of a two-cell cellular neural network, numerical simulations show that these networks can realize synchronization with smaller time-delay, and will lose synchronization when the time-delay increase larger than a threshold.  相似文献   

15.
Iddo Eliazar 《Physica A》2007,386(1):318-334
The Lorenz curve is a universally calibrated statistical tool measuring quantitatively the distribution of wealth within human populations. We consider infinite random populations modeled by inhomogeneous Poisson processes defined on the positive half-line—the randomly scattered process-points representing the wealth of the population-members (or any other positive-valued measure of interest such as size, mass, energy, etc.). For these populations the notion of “macroscopic Lorenz curve” is defined and analyzed, and the notion of “Lorenzian fractality” is defined and characterized. We show that the only non-degenerate macroscopically observable Lorenz curves are power-laws manifesting Paretian statistics—thus providing a universal “Lorenzian explanation” to the ubiquitous appearance of Paretian probability laws in nature.  相似文献   

16.
Front propagation described by Huygens' principle is a fundamental mechanism of spatial spreading of a property or an effect, occurring in optics, acoustics, ecology and combustion. If the local front speed varies randomly due to inhomogeneity or motion of the medium (as in turbulent premixed combustion), then the front wrinkles and its overall passage rate (turbulent burning velocity) increases. The calculation of this speedup is subtle because it involves the minimum-time propagation trajectory. Here we show mathematically that for a medium with weak isotropic random fluctuations, under mild conditions on its spatial structure, the speedup scales with the 4/3 power of the fluctuation amplitude. This result, which verifies a previous conjecture while clarifying its scope, is obtained by reducing the propagation problem to the inviscid Burgers equation with white-in-time forcing. Consequently, field-theoretic analyses of the Burgers equation have significant implications for fronts in random media, even beyond the weak-fluctuation limit.  相似文献   

17.
M. ?ukovi?  D.T. Hristopulos 《Physica A》2008,387(15):3995-4001
A Spartan random process (SRP) is used to estimate the correlation structure of time series and to predict (interpolate and extrapolate) the data values. SRPs are motivated from statistical physics, and they can be viewed as Ginzburg-Landau models. The temporal correlations of the SRP are modeled in terms of ‘interactions’ between the field values. Model parameter inference employs the computationally fast modified method of moments, which is based on matching sample energy moments with the respective stochastic constraints. The parameters thus inferred are then compared with those obtained by means of the maximum likelihood method. The performance of the Spartan predictor (SP) is investigated using real time series of the quarterly S&P 500 index. SP prediction errors are compared with those of the Kolmogorov-Wiener predictor. Two predictors, one of which is explicit, are derived and used for extrapolation. The performance of the predictors is similarly evaluated.  相似文献   

18.
We reconsider the problem of calculating a general spectral correlation function containing an arbitrary number of products and ratios of characteristic polynomials for a N×N random matrix taken from the Gaussian Unitary Ensemble (GUE). Deviating from the standard “supersymmetry” approach, we integrate out Grassmann variables at the early stage and circumvent the use of the Hubbard–Stratonovich transformation in the “bosonic” sector. The method, suggested recently by J.V. Fyodorov [Nucl. Phys. B 621 [PM] (2002) 643], is shown to be capable of calculation when reinforced with a generalisation of the Itzykson–Zuber integral to a non-compact integration manifold. We arrive to such a generalisation by discussing the Duistermaat–Heckman localisation principle for integrals over non-compact homogeneous Kähler manifolds. In the limit of large-N the asymptotic expression for the correlation function reproduces the result outlined earlier by A.V. Andreev and B.D. Simons [Phys. Rev. Lett. 75 (1995) 2304].  相似文献   

19.
The purpose of this Letter is to compare the dynamics of the kink interacting with the imperfection which follows from the collective coordinate method with the numerical results obtained on the ground of the field theoretical model. We showed that for weekly interacting kinks the collective coordinate method works similarly well for low and extremely large speeds.  相似文献   

20.
Forbidden ordinal patterns are ordinal patterns (or rank blocks) that cannot appear in the orbits generated by a map taking values on a linearly ordered space, in which case we say that the map has forbidden patterns. Once a map has a forbidden pattern of a given length L0, it has forbidden patterns of any length LL0 and their number grows superexponentially with L. Using recent results on topological permutation entropy, in this paper we study the existence and some basic properties of forbidden ordinal patterns for self-maps on n-dimensional intervals. Our most applicable conclusion is that expansive interval maps with finite topological entropy have necessarily forbidden patterns, although we conjecture that this is also the case under more general conditions. The theoretical results are nicely illustrated for n=2 both using the naive counting estimator for forbidden patterns and Chao’s estimator for the number of classes in a population. The robustness of forbidden ordinal patterns against observational white noise is also illustrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号