首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The ion and electron temperatures and plasma flow velocities are measured and compared between atmospheric and low pressure plasma spraying systems. The measurements of ion temperature for two systems are carried out by an optical emission spectroscopy which uses the relative emissivities of isolated Ar I emission lines. The electron density and temperature are measured by a Langmuir probe rotating across the plasma jets. The ion saturation currents collected by a Mach probe at two orientations, perpendicular and parallel to the plasma jet, determine the flow velocity. The spatial distributions of electron density, plasma flow velocity, and the associated shock activity in thermal plasma jets are discussed in conjunction with their direct dependency upon the ambient pressures as well as the torch powers. Measurements on temperatures and velocity profiles of thermal plasma jets reveal the general features of the LPPS jet characteristics, i.e., higher velocity flow with lower temperature, longer heating zone of expanded flame, and more extended accelerating zone compared with those of the APS jets. The shock activity clearly exists in the form of standing shock waves in the plasma jet of LPPS in view of flow compression and abrupt velocity drop which are appeared in the results of measurements on the variations of electron density and flow velocity along the plasma jet. In the center of the plasma jet of APS, the electron density is high enough to reach the LTE criterion, and the difference between ion and electron temperatures becomes insignificant as the torch input power increases  相似文献   

2.
为了研究高速动态气流中的电子束等离子体特性,建立了一个由蒙特卡罗模型、多组分等离子体模型与计算流体力学模型组成的多阶段耦合数值模型,在临近声速气流条件下,对1.33×104 Pa空气电子束等离子体特性进行了研究。结果表明,电子束能量沉积具有极强的空间不均性,电子束激发下的风洞流场呈现不同的性质,亚声速流场下游边界区密度减小,而在超声速流场中可诱发弱激波;相比于静止气体,在动态气流中等离子体密度下降,且存在额外的输运行为,使其向气流下游输运,但在临近声速条件下,气流速度大小对气流下游等离子体分布的影响不大;电子束入射角对等离子体空间分布和大小均有影响。  相似文献   

3.
采用PLASIMO程序模拟了入口处Ar流速对多级弧放电产生的非热平衡Ar等离子体特性的影响。模拟结果发现:从入口处到出口处,沿中心轴线,压强逐渐降低,电子平均能量基本保持不变。当流速一定时,从器壁到中心轴线处,电子数密度呈增大趋势;从入口处到出口处,电子数密度呈先增大后减小的趋势;当流速分别为50,100,150和200 cm3/s时,电子数密度最大值分别为10.131021,16.311021,18.981021和26.331021 m-3;随着流速的增大,其电子数密度逐渐增大。当流速一定时,从器壁到中心轴线处,电子温度逐渐增大;从入口处到出口处,电子温度呈先增大后减小再增大的趋势,并在中心轴线处距入口55~60 mm有最大值,当流速分别为50,100,150和200 cm3/s时,其最大值分别为1.299,1.234,1.157和1.132 eV;由于入口处和器壁处的电子温度都为0.517 eV,所以随着Ar流速的增大,其电子温度逐渐减小。当Ar流速一定时,从器壁到中心轴线处,离子温度逐渐增大;从入口处到出口处,离子温度呈先增大后减小的趋势,并且在中心轴线距入口20~30 mm离子温度取得最大值,当流速分别为50,100,150和200 cm3/s时,离子温度最大值分别为0.815 6,0.907 02,0.975 2和1.014 eV。随入口处流速的增大,电弧腔体内的离子温度逐渐增大。  相似文献   

4.
A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjacent to the sheath. The width of the region is of order V(T)/omega, where V(T) is the electron thermal velocity, and omega is the frequency of the electric field. The presence of the electric field in the transition region results in a collisionless cooling of the energetic electrons and an additional heating of the cold electrons.  相似文献   

5.
A study is made of the spectrum of surface waves in a semibounded plasma flow. The frequency spectra and damping rates of the waves propagating along the flow are analyzed both in the high-frequency range (in which the spatial dispersion is weak and the wave damping is governed primarily by electron collisions) and the low-frequency range (in which the spatial-dispersion effects dominate), with focus on the effect of the flow velocity on the propagation of ion-acoustic waves. Special attention is paid to the penetration of a static field into a plasma flowing at a supersonic velocity.  相似文献   

6.
In this work, incompressible and compressible flows of background gas are characterized in argon inductively coupled plasma by using a fluid model, and the respective influence of the two flows on the plasma properties is specified. In the incompressible flow, only the velocity variable is calculated, while in the compressible flow, both the velocity and density variables are calculated. The compressible flow is more realistic; nevertheless, a comparison of the two types of flow is convenient for people to investigate the respective role of velocity and density variables. The peripheral symmetric profile of metastable density near the chamber sidewall is broken in the incompressible flow. At the compressible flow, the electron density increases and the electron temperature decreases. Meanwhile, the metastable density peak shifts to the dielectric window from the discharge center, besides for the peripheral density profile distortion, similar to the incompressible flow.The velocity profile at incompressible flow is not altered when changing the inlet velocity, whereas clear peak shift of velocity profile from the inlet to the outlet at compressible flow is observed as increasing the gas flow rate. The shift of velocity peak is more obvious at low pressures for it is easy to compress the rarefied gas. The velocity profile variations at compressible flow show people the concrete residing processes of background molecule and plasma species in the chamber at different flow rates. Of more significance is it implied that in the usual linear method that people use to calculate the residence time, one important parameter in the gas flow dynamics, needs to be rectified. The spatial profile of pressure simulated exhibits obvious spatial gradient. This is helpful for experimentalists to understand their gas pressure measurements that are always taken at the chamber outlet. At the end, the work specification and limitations are listed.  相似文献   

7.
Experiments in a double plasma device study the electron velocity distribution and heat flow in large temperature gradients. The heat flow corresponds to a flux-limiting parameter of 0.09 ± 0.04.  相似文献   

8.
用软X射线脉冲高度分析(PHA)阵列系统获得了等离子体的电子温度剖面和电子速率分布的时间演化。测量结果表明,电子温度剖面在OH阶段较平缓,接近抛物线1.0×[1-(r/a)2]2分布;而在ECRH(功率0.8MW)阶段,等离子体中心(z=0)电子温度上升了0.6keV,边缘(z=30cm)处只上升了0.1keV,反映出ECRH功率沉积在等离子体中心区域;在ECRH期间有大量的高能电子产生,因而电子速率分布在ECRH期间显著改变;等离子体中心的高能电子的数量和能量都比等离子体边缘的增加更大,ECRH(~0.8MW)期间等离子体中心(z=0)产生的高能电子的能量可达17keV。分析表明:在ECRH(纵场Bt=1.3T)放电期间,ECRH加热效果显著,ECRH的功率主要沉积在等离子体中心附近;电子温度剖面在ECRH阶段较OH阶段峰化;ECRH期间有大量的高能电子产生,电子速率分布被改变成为非麦克斯韦分布。  相似文献   

9.
We study the acceleration of an ion flow in the electron layer formed by an electron flow moving in a transverse electric field and confined by the intrinsic magnetic field. The possibility of extraction of heavy ions with velocities lower than the ion sound velocity from the plasma, and the feasibility of their further acceleration by an external field is demonstrated.  相似文献   

10.
A one-dimensional fluid model of the microwave electron cyclotron resonance (ECR) discharge, which includes the inhomogeneity effects of the external magnetic field, is developed. We use fluid equations which are obtained from the one-dimensional Bolzmann equation expressed in terms of magnetic moment and parallel velocity. We model the plasma and sheath separately, and appropriate plasma-sheath boundary conditions are utilized. Microwave is represented by an energy flow, and treated by a ray tracing technique. For the argon discharge, we obtain various quantities such as the axial profiles of plasma density, electron temperature, electrostatic potential, fluid velocity, and microwave power deposition. The results of simulation compare well with the experimental observation of the mirror field effects on the plasma parameters  相似文献   

11.
成玉国  夏广庆 《物理学报》2017,66(7):75204-075204
为了分析感应式脉冲放电等离子体推力器中时变电磁场作用下等离子体的放电参数分布及其随着磁场强度变化的影响,引入了利用双曲型散度清除方法的二维轴对称瞬态等离子体流动的磁流体力学数值模型.计算结果表明,随着输入能量的增加,等离子体团出现速度峰值的时刻提前,等离子体中同时存在的异号电流环对其加速具有阻滞作用.等离子体的加速效率随着磁场强度非线性增大,磁场大于某一临界值时(几何构型下峰值磁场强度大于0.45 T),有限空间情况下等离子体的加速效率获得显著提高.  相似文献   

12.
陆全康 《物理学报》1979,28(2):160-172
本文分析沿外磁场方向的等离子体川流激发回旋不稳定性的尼奎斯特图.阐述包含变量ns(川流等离子体的电子密度),n0(静止等离子体的电子密度),B(外磁场强度),k(波数),v(川流速度)与T(体系温度)的不稳定性判据的计算方法。具体算出氢等离子体的定量结果。为探讨不稳定区域的特征,还分析了有两支川流时的回旋与静电不稳定性。 关键词:  相似文献   

13.
The electron densities in the atmospheric pressure helium plasma were calculated by means of electron drift velocity and the jet velocity respectively. The electron velocity and jet velocity can be calculated by means of helium plasma jet current measured by a dielectric probe and plasma discharge current signal measured by voltage probes. The results show that the estimated electron densities of the helium plasma jet calculated from electron drift velocity and the jet velocity are in the order of 10 11 cm -3 and they increase with applied voltage. There is a little fluctuation in the value of the electron density along the jet axis of the plasma. This result is the same as the measured electron density in atmospheric pressure helium non-thermal plasma jet by using a Rogowski coil and a Langmuir probe. This is in one order lower than the electron density measured by microwave antenna.  相似文献   

14.
The drift wave is observed to be destabilized by a magnetic-field-aligned ion flow velocity shear in the absence of field-aligned electron drift flow in laboratory experiments using a concentrically three-segmented plasma source. The fluctuation amplitude increases with increasing a shear strength, but the instability is found to be gradually stabilized when the shear strength exceeds a critical value. The destabilizing and stabilizing mechanisms are well explained by a plasma kinetic theory including the effect of radial density gradient.  相似文献   

15.
分别利用电子的漂移速度和等离子体的传播速度计算了大气压下氦等离子体射流的电子密度。  相似文献   

16.
A collisional plasma flow moving along a magnetic field at a velocity lower than the speed of sound is considered. It has been found that stationary small perturbations increase downstream in the flow. The mechanism of the increase is related to the fact that subsonic ideal-plasma flows respond to external perturbations primarily by a change in the pressure of the plasma. As a result, the pressure under perturbation of the velocity changes so that the stationary flow is decelerated and accelerated if the force is directed along and against the velocity, respectively. This phenomenon can be explained under the assumption that the effective mass of the plasma is negative. If the velocity of the flow is inhomogeneous in the transverse direction, the viscosity force plays a role of the external perturbing force. In this case, the effective transverse viscosity coefficient, which should be treated as negative, can be renormalized instead of the effective mass. The sign of the effective specific heat or the effective transverse thermal conductivity coefficient changes similarly if the velocity of the flow is lower than the speed of sound but is higher than the thermal velocity of ions calculated from the sum of the ion and electron temperatures. A downstream increase in the stationary perturbations is called in this work spatial instability. The downstream growth rate has been determined. The numerical analysis of the evolution of perturbations illustrates the development of the spatial instability of subsonic collisional plasma flows moving along the magnetic field.  相似文献   

17.
A surface glow discharge in a gas flow is of particular interest as a possible tool for controlling the flow past hypersonic aircrafts. Using a hydrodynamic model of glow discharge, two-dimensional calculations for a kilovolt surface discharge in nitrogen at a pressure of 0.5 Torr are carried out in a stationary gas, as well as in a flow with a velocity of 1000 m/s. The discharge structure and plasma parameters are investigated near a charged electrode. It is shown that the electron energy in a cathode layer reaches 250–300 eV. Discharge is sustained by secondary electron emission. The influence of a high-speed gas flow on the discharge is considered. It is shown that the cathode layer configuration is flow-resistant. The distributions of the electric field and electron energy, as well as the ionization rate profile in the cathode layer, do not change qualitatively under the action of the flow. The basic effect of the flow’s influence is a sharp decrease in the region of the quasineutral plasma surrounding the cathode layer due to fast convective transport of ions.  相似文献   

18.
用软X射线脉冲高度分析(PHA)阵列系统获得了等离子体的电子温度剖面和电子速率分布的时间演化。测量结果表明,电子温度剖面在OH阶段较平缓,接近抛物线1.0×[1-(r/a)2]2分布;而在ECRH(功率0.8MW)阶段,等离子体中心(z=0)电子温度上升了0.6keV,边缘(z=30cm)处只上升了0.1keV,反映出ECRH功率沉积在等离子体中心区域;在ECRH期间有大量的高能电子产生,因而电子速率分布在ECRH期间显著改变;等离子体中心的高能电子的数量和能量都比等离子体边缘的增加更大,ECRH(~0.8MW)期间等离子体中心(z=0)产生的高能电子的能量可达17keV。分析表明:在ECRH(纵场Bt=1.3T)放电期间,ECRH加热效果显著,ECRH的功率主要沉积在等离子体中心附近;电子温度剖面在ECRH阶段较OH阶段峰化;ECRH期间有大量的高能电子产生,电子速率分布被改变成为非麦克斯韦分布。  相似文献   

19.
磁场中等离子体鞘层的结构   总被引:1,自引:0,他引:1       下载免费PDF全文
邹秀  刘金远  王正汹  宫野  刘悦  王晓钢 《物理学报》2004,53(10):3409-3412
采用流体力学理论,研究了斜磁场作用下的等离子体鞘层结构.在不同大小及方向的磁场作用下,对鞘层的离子,电子密度分布,离子流速度分布,电势分布和Bohm判据进行了讨 论.结果显示磁场对鞘层的结构有明显的影响.在静电力和洛仑兹力的作用下,离子流作螺旋进动,离子密度分布产生振荡. 关键词: 磁鞘 等离子体 磁场  相似文献   

20.
A normalized plasma flow velocity in highly collisional plasma formed by a microwave plasma jet, which is dimensionless unit for plasma flow velocity/ion acoustic velocity, was measured by the parallel Mach probe. To deduce the normalized plasma flow velocity under highly collisional plasma conditions, the collisional model of a Mach probe was proposed. In addition, neutral gas flow velocity which assumed to be plasma flow velocity was calculated by the turbulent model. The results for the two different models were compared with those for the collsionless models of the Mach probe. The turbulent model produced 2–4 times reduced values than by measurements with collsionless models. The measured results with the collisional model were shown as approximately 100–250% lower than those for collsionless models. They were obtained to be in good agreement with difference rate of 10–30% when compared to those for the turbulent model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号