首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Stĕdrý M  Jaros M  Hruska V  Gas B 《Electrophoresis》2004,25(18-19):3071-3079
A mathematical model of capillary zone electrophoresis (CZE) based on the conception of eigenmobilities, which are the eigenvalues of a matrix M tied to the linearized governing equations is presented. The model considers CZE systems, where constituents, either analytes or components of the background electrolyte (BGE), are weak electrolytes--acids, bases, or ampholytes. There is no restriction on the number of components nor on the valence of the constituents nor on pH of the BGE. An electrophoretic system with N constituents has N eigenmobilities. In most BGEs one or two eigenmobilities are very close to zero so their corresponding eigenzones move very slowly. However, there are BGEs where no eigenmobility is close to zero. The mathematical model further provides: the transfer ratio, the molar conductivity detection response, and the relative velocity slope. This allows the assessment of the indirect detection, conductivity detection and peak broadening (distortion) due to electromigration dispersion. Also, we present a spectral decomposition of the matrix M to matrices allowing the assessment of the amplitudes of system eigenpeaks (system peaks). Our model predicted the existence of BGEs having no stationary injection zone (or water zone, gap, peak, dip). A common practice of using the injection zone as a marker of the electroosmotic flow must fail in such electrolytes.  相似文献   

2.
Nonaqueous (NA) solutions are often used as background electrolytes (BGEs) and NA solvents are added to aqueous BGEs as organic modifiers in capillary zone electrophoresis (CZE), in order to optimize the separations. This can be tricky, however, because the pH* and pK* concepts may be totally different in NA solvents, whereas often less knowledge is available concerning phenomena, such as system zones, applying NA solvents. In this paper, the concepts of pH* and pK* are considered for methanol as a solvent and pK* values are determined for several components in mixtures of water and methanol. With a mathematical model, adapted for calculations in methanol, parameters are calculated describing the fronting or tailing character of peaks and the question of peaks or dips, and the existence of system zones is discussed for pure methanol as a solvent. These aspects are experimentally verified, applying BGEs useful for the separation of cationic species in the indirect UV mode. It can be concluded that the mathematical model developed for aqueous BGEs is applicable to BGEs in methanol, too, and that the behavior of BGEs in methanol is comparable with that in water concerning the fronting or tailing character of peaks and the question of peaks and dips, although the mobilities and pK values can change significantly.  相似文献   

3.
In this article the methodology of the design of suitable background electrolytes (BGEs) in capillary zone electrophoresis (CZE) is described. The principal aspects of the role of a BGE in CZE are discussed with respect to an appropiate migration behavior of analytes, including the transport of the electric current, the buffering of pH, the Joule heat, the electro-endosmotic flow (EOF) and the principal migration and detection modes. The impact of the composition of the BGE upon migration and detection is discussed. It is shown that the total concentration of the BGE is a principal factor and the adjustment of migrating analyte zones according to the Kohlrausch regulating function (KRF) is the principal effect in most of the sample stacking techniques. The number of co-ions and their properties are of key importance for peak shapes of the analyte peaks and for the existence of system zones. The detection of UV-transparent analytes may advanteously be done in the indirect UV mode, by using UV-absorbing co-ions, however, both peaks and dips may be expected in the UV trace in case of multiple co-ionic BGEs. Properties of BGEs can be predicted applying mathematical models and it is shown that with SystCharts, predictions can be given concerning the existence of system zones, detection modes and the peak shapes of analytes for a given BGE. Practical examples of methodological considerations are given in the design of suitable BGEs for four principal combinations of migration and detection modes. The properties of the BGEs selected are exemplified with experimental results. Golden rules are summarized for the preparation of suitable BGEs in CZE.  相似文献   

4.
Electromigration dispersion (EMD) properties of background electrolytes (BGEs) used in capillary zone electrophoresis (CZE) are of key importance for the success of an analysis. The knowledge of these properties may serve well for the prediction of the asymmetry of peaks of analytes, for the prediction of unsafe regions where a strong interference of system zones may be expected, and for the selection of optimum conditions where the analytes of interest may give sharp and practically symmetric peaks. Present theories enable one to calculate and predict EMD properties of many BGEs but there is also a lot of BGEs that are beyond the present theoretical models as far as their composition and equilibria involved are considered. This contribution brings a method for assessment of EMD properties of any BGE from easily accessible experimental data. The method proposed is illustrated by model examples both for cationic and anionic separations. Imidazole acetate, histamine acetate, and histidine acetate served as model BGEs for cationic separations; as the model BGE for anionic separations, Tris-borate and sodium-borate BGEs have been selected since these buffers are frequently used and borate is well-known for its complexing equilibria in aqueous solutions.  相似文献   

5.
Gebauer P  Beckers JL  Bocek P 《Electrophoresis》2002,23(12):1779-1785
In the last years, it has been shown that the formation and migration of system zones is an inherent feature of capillary zone electrophoresis (CZE) and that it depends predominantly on the composition of an actual background electrolyte (BGE). In most of the currently used BGEs, the SZs are invisible by the UV absorbance detection system, however, the comigration of SZs with the zones of analytes deteriorates the analytical performance of CZE and may be fatal for its utilization. Therefore, the theoretical predictions of the existence and migration of SZs is of key importance for the expediency of CZE. This is a review of the theoretical treatments of SZs which reveals the origin and the properties of SZs and shows how to cope with them. Also, a table of some typical BGEs is presented where the existence and mobilities of SZs are given.  相似文献   

6.
Shi Q  Chen J  Li X  Cao W  Zheng L  Zang J  Wang X 《色谱》2011,29(6):481-487
对毛细管电泳法分离15种核苷类化合物所用的不同缓冲液体系进行了系统比较,确定不同模式毛细管电泳法分析多种核苷类化合物的最适合背景缓冲液体系(BGE)。分别以四硼酸钠、磷酸氢二钠、乙酸钠、碳酸氢钠、乙酸铵和乙二胺(DEA)为背景电解质,对毛细管区带电泳(CZE)、毛细管电泳-电喷雾飞行时间质谱(CE-ESI-TOF/MS)以及胶束电动毛细管电泳(MEKC)3种模式进行比较,并对其中几种优势缓冲体系进行了优化。结果表明,CZE模式下使用四硼酸钠和磷酸氢二钠缓冲体系无法同时分离15种核苷类化合物,因此只适用于分析核苷类化合物数量较少的样品。而使用含有2%丙酮的300 mmol/L DEA能完全分开15种核苷类化合物,且分辨率和峰形良好。MEKC模式下,以25 mmol/L磷酸氢二钠(添加70 mmol/L十二烷基磺酸钠(SDS))为缓冲盐的分离结果最佳,并且此方法能成功应用于海洋生物海葵中核苷类化合物的分离。CE-ESI-TOF/MS分析中,以20 mmol/L乙酸铵(pH 10.0)为背景电解质,正离子模式检测,15种核苷类化合物的质谱信号均良好,检测灵敏度明显优于文献中报道的使用DEA缓冲体系的结果。本研究阐明了不同缓冲体系对15种核苷类化合物分离的适用性,为毛细管电泳技术在复杂基质中多种核苷类化合物的分离方法中的应用奠定了基础。  相似文献   

7.
Gas B  Kenndler E 《Electrophoresis》2004,25(23-24):3901-3912
When working with capillary zone electrophoresis (CZE), the analyst has to be aware that the separation system is not homogeneous anymore as soon as a sample is brought into the background electrolyte (BGE). Upon injection, the analyte creates a disturbance in the concentration of the BGE, and the system retains a kind of memory for this inhomogeneity, which is propagated with time and leads to so-called system zones (or system eigenzones) migrating in an electric field with a certain eigenmobility. If recordable by the detector, they appear in the electropherogram as system peaks (or system eigenpeaks). However, although their appearance can not be forecasted and explained easily, they are inherent for the separation system. The progress in the theory of electromigration (accompanied by development of computer software) allows to treat the phenomenon of system zones and system peaks now also in very complex BGE systems, consisting of several multivalent weak electrolytes, and at all pH ranges. It also allows to predict the existence of BGEs having no stationary injection zone (or water zone, EO zone, gap, dip). Our paper reviews the theoretical background of the origin of the system zones (system peaks, system eigenpeaks), discusses the validity of the Kohlrausch regulating function, and gives practical hints for preparing BGEs with good separation ability not deteriorated by the occurrence of system peaks and by excessive peak-broadening.  相似文献   

8.
Capillary zone electrophoresis (CZE) has been applied to qualitative and quantitative analysis, separation and physicochemical characterization of synthetic gonadotropin-releasing hormones (GnRHs) and their analogs and fragments. Structurally related peptides were separated in conventional and isoelectric acidic background electrolytes (BGEs), pH 2.18-2.50. Best separation was achieved in isoelectric BGE composed of 200 mM iminodiacetic acid, pH 2.32. The effective electrophoretic mobilities, m(ep), of GnRHs in five BGEs were determined and four semiempirical models correlating effective mobility with charge, q, and relative molecular mass, M(r), (m(ep) versus q/M(r)(k), where k is related to the molecular shape) were tested to describe the migration behavior of GnRHs in CZE. None of the models was found to be quite definitively applicable for the whole set of 10 GnRHs differing in size (tetrapeptide-decapeptide) and positive charge (0.91-3.00 elementary charges). Nevertheless, for the dependence of m(ep) on q/M(r)(k), the highest coefficient of correlation, R=0.995-0.999, was obtained for k close to the value 0.5 in all five acidic BGEs. This indicates that the most probable structure of GnRHs in these BGEs can be predicted as a random coil.  相似文献   

9.
Phthalate buffers are currently used in capillary electrophoresis as robust electrolyte systems for indirect detection. This contribution demonstrates that these buffers show regularly not only successful regions of mobilities of analytes (sample window) but also regions of failure where the migration of analytes is strongly deteriorated due to the presence of a system zone. System zones in phthalate buffers may be easily detected by UV detection and manifest themselves as peaks or dips. Peak shape diagrams are advantageously used for the prediction of the migration behavior of system zones in phthalate background electrolyte (BGE) systems at various pH. It is shown that the mobility of the system zone varies strongly with pH, is practically zero at pH values below 4 and above 7, and shows a maximum at pH 5. Thus, the system peak may coincide either with the peaks of various analytes or with the electroosmotic flow (EOF) peak. Experiments are given showing the effects of such coincidences as, e.g., zigzag detection patterns, double EOF peaks, and/or unusually broad peaks/dips. The message of this contribution is to show how to understand the electrophoretic properties of phthalate BGEs that, regardless of possible failure regions, may be successfully used in the analytical practice of capillary zone electrophoresis (CZE).  相似文献   

10.
Beckers JL 《Electrophoresis》2003,24(3):548-556
A lot of phenomena, occuring in capillary zone electrophoresis (CZE), are linked with the ionic concentration of the background electrolyte (BGE). If weak bases and acids are used as BGEs in CZE, at a pH where they are scarcely ionized, the ionic concentration of the BGE is very low and this brings a strong peak broadening, limited sample stacking and low sample load. Because the electromigration dispersion increases extremely, moreover, the existence of low-conductivity BGEs in CZE is a contradiction in terms. The behavior of ampholytes as BGE in CZE is examined, by means of histidine as a model ampholyte. For BGEs consisting of histidine, important parameters, including the ionic concentrations, buffer capacity, transfer ratio, and the indicator for electromigration dispersion E(1)m(1)/E(2)m(2), are calculated at various pH. Although the transfer ratio is fairly constant over the whole pH traject, the ionic concentration and buffer capacity decrease whereas the electromigration dispersion strongly increases near the pI of histidine. I.e., that ampholytes can be applied as BGEs in CZE, however, just not at pH near their pI value, except as the difference between the pK values of the basic and acidic group, the deltapK value, is very small. For ampholytes with a low deltapK value or at high concentrations, all the before-mentioned effects are less fatal, but in that case we can not speak of a real low-conductivity BGE. If ampholytes are used at pH near their pK values, the use of ampholytes as BGE is not advantageously compared with simple weak bases and acids. This has been confirmed by calculations and experiments.  相似文献   

11.
We analyze in detail a mathematical model of capillary zone electrophoresis (CZE) based on the conception of eigenmobilities, which are eigenvalues of the matrix tied to the linearized continuity equations. Our model considers CZE systems, where constituents are weak electrolytes and where pH of the background electrolyte may reach the full range from 0 to 14. Both hydrogen and hydroxide ions are taken into account in relations for conductivity and electroneutrality. An electrophoretic system with N constituents has N eigenmobilities. We reveal that two of the eigenmobilities have a special meaning as they exist due to the presence of hydrogen ions and hydroxide ions (in water solutions). These two eigenmobilities are responsible for the existence of two corresponding system zones (system peaks). We show that the stationary zone (injection zone, water zone, gap, peak, dip) is in many common background electrolytes composed of these two eigenzones which overlap, due to their very low electrophoretic mobility, into one zone. Other eigenmobilities give rise to system zones originating due to a possible existence of double (or multiple) coconstituents in the background electrolyte. The last group of eigenmobilities is connected with the movement of eigenzones accompanying analytes and enabling their indirect UV or conductivity detection. The model allows assessing experimentally available quantities such as effective mobility of the analyte, molar conductivity detection response, transfer ratio, and relative velocity slope and gives a picture about migration of analytes, their electromigration dispersion and signals obtained in detectors. It allows computer simulation of electropherograms and enables optimization of background electrolytes.  相似文献   

12.
The paper describes how borate-containing BGEs modify ζ-potential and so EOF in bare fused silica capillaries. This surface modification can be used to suppress EOF and improve the separation performance of CZE including capillary sieving electrophoresis (CSE). Boric acid forms complexes with polysaccharides used as sieving matrices in CSE and other compounds containing hydroxyl groups, including polyol bases such as Tris, triethanolamine, and Bis-Tris propane. High concentration of boric acid in BGEs leads to a strong interaction of boric acid with the silica surface of the capillary wall and this suppresses or even completely eliminates ζ-potential and EOF. Using a polyol base with several charge-carrying amino groups, such as Bis-Tris propane, can actually reverse EOF. We demonstrate the use of various borate-containing BGEs in bare fused silica capillaries for size-separation of DNA fragments, size-separation of proteins by SDS CSE, and also by CZE in the absence of any sieving matrix.  相似文献   

13.
A generic approach has been developed for coupling capillary electrophoresis (CE) using non-volatile background electrolytes (BGEs) with mass spectrometry (MS) using a sheath liquid interface. CE-MS has been applied for basic and bi-functional compounds using a BGE consisting of 100 mM of TRIS adjusted to pH 2.5 using phosphoric acid. A liquid sheath effect is observed which may influence the CZE separation and hence may complicate the correlation between CE-UV and CE-MS methods. The influence of the liquid sheath effect on the migration behavior of basic pharmaceuticals has been studied by simulation experiments, in which the BGE outlet vial is replaced by sheath liquid in a CE-UV experiment. As a consequence of the liquid sheath effect, phosphate based BGEs can be used without significant loss of MS sensitivity compared to volatile BGEs. The use of buffer constituents such as TRIS can lead to lower detection limits as loss of MS sensitivity can be compensated by better CE performance. TRIS based BGEs permit relatively high injection amounts of about 100 pmol while maintaining high resolution. The ESI-MS parameters were optimized for a generic method with maximum sensitivity and stable operation, in which the composition of the sheath liquid and the position of the capillary were found to be important. Furthermore, the nebulizing pressure strongly influenced the separation efficiency. The system showed stable performance for several days and a reproducibility of about 15% RSD in peak area has been obtained. Nearly all test compounds used in this study could be analyzed with an MS detection limit of 0.05% measured in scan mode using extracted ion chromatograms. As a result, CE-MS was found to be a valuable analytical tool for pharmaceutical impurity profiling.  相似文献   

14.
The electrochemical behavior of a copper (Cu) electrode and its application in capillary electrophoresis determination of polyols was investigated in order to understand the redox property of Cu and achieve better separation efficiency. Electrochemical measurements were performed using a Cu electrode (fresh or oxidized) in buffer solutions having different pH values (7.8–13.0) by cyclic voltammetry. The Cu electrode showed higher electroactivity under stronger alkaline conditions. Further, the Cu electrode was found suitable for detecting weak oxidizing or reducing polyhydroxy compounds because of the redox reactions among Cu, Cu(I), and Cu(II) species. Thus, the Cu electrode was used in capillary zone electrophoresis (CZE) for separation and determination of propanediol and glycerol, weak electroactive polyols, using different separation (pH 8.7) and detection (pH 11.04) buffers. Separation and detection buffers with different pH values in CZE technology could offer efficient separation efficiency and detection limits at the same time.  相似文献   

15.
Capillary zone electrophoresis (CZE) was applied to analysis and characterization of phosphinic pseudopeptides with the general structure N-Ac-Val-Ala(psi)(PO2(-)-CH(2)) Leu-Xaa-NH(2), where Xaa represents one of 20 proteinogenic amino acid residues. Pseudopeptides containing neutral or acidic amino acid residues in position Xaa were analyzed as anions in weakly alkaline (pH 8.1) Tris-Tricine background electrolyte (BGE), pseudopeptides with basic amino acid residues in position Xaa were analyzed as cations in acid BGEs (Tris-phosphate buffers). Acidity of phosphinic acid moiety in peptides with basic amino acid residues was determined from the dependence of effective mobility of these peptides on pH in the acid pH region (pH 1.4-2.8). Additionally, separation of diastereomers of some peptides was achieved.  相似文献   

16.
The aim of this study was to setup a method for detection and quantification of monosaccharide components in technical galactoglucomannas (T-GGM) from spruce wood using capillary zone electrophoresis (CZE). CZE technique was optimised regarding borate buffer concentrations, EOF modifier application, and system pH. Aqueous solution of T-GGM was chemically hydrolysed by sulphuric acid, in an autoclave. In this way obtained monosaccharides were derivatized with 4-amino benzoic acid ethyl ester via reductive amination using sodium cyanoborohydride. The results of the optimisation procedure showed that the borate buffers at lowest concentrations (100 and 200 mM) with acetonitrile addition as EOF modifier gave the optimal measurement results, as it showed sufficient separation at relatively short migration times. The amounts of single monosaccharide components in the T-GGM samples obtained by the optimised CZE procedure were practically the same in comparison to the results of the well established HPLC-anion exchange chromatography. On the basis of this research, it was concluded that the capillary zone electrophoresis is an efficient analytical procedure for the characterisation of galactoglucomannans derived from softwoods.  相似文献   

17.
Carrier ampholyte-based capillary electrophoresis (CABCE) has recently been introduced as an alternative to CE (CZE) in the classical buffers. In this study, isoelectric BGEs were obtained by fractionation of Servalyt pH 4-9 carrier ampholytes to cuts of typical width of 0.2 pH unit. CABCE feasibility was examined on a series of insect oostatic peptides, i.e. proline-rich di- to decapeptides, and phosphinic pseudopeptides--tetrapeptide mimetics synthesized as a mixture of four diastereomers having the -P(O)(OH)-CH(2)- moiety embedded into the peptide backbone. With identical selectivity, the separation efficiency of CABCE proved to be as good as classical CE for the insect oostatic peptides and better for diastereomers of the phosphinic pseudopeptides. In addition, despite the numerous species present in the narrow pH cuts of carrier ampholytes, CABCE seems to be free of system zones that could hamper the analysis. Peak symmetry was good for moderately to low mobile peptides, whereas some peak distortion due to electromigration dispersion, was observed for short peptides of rather high mobility.  相似文献   

18.
Beckers J  Bocek P 《Electrophoresis》1999,20(3):518-524
Non-steady-state electrophoretic processes can be estimated by a repeated application of a steady-state model based on the electroneutrality equation, the modified version of Ohm's law, and the mass balances of the co- and counterions. With such a mathematical model, all parameters in sample zones in capillary zone electrophoresis (CZE) can be calculated. The relationships between the calculated parameters for sample zones in CZE, such as the pH, concentrations of co- and counterions, and the ratio E1m1/E2m2 versus the mobilities of both anionic and cationic analytes can be visualized in a SystChart, a set of eight panels, for a given background electrolyte (BGE). All properties of a zone, such as the fronting/tailing character and the question of peaks/dips can be read from such a SystChart. Applying n coions, n-1 discontinuities are present in such a SystChart, indicating the presence of system peaks applying that BGE. For BGEs with one coion, no system peaks (discontinuities) exist at moderate pH values. SystCharts calculated for BGEs with a low pH do show discontinuities, however, which indicates that system peaks are present in electropherograms applying BGEs at low pH. Experimentally, it is shown that system peaks are indeed present in electropherograms applying BGEs with one coion at low pH and the mobilities of the system peaks generally increase with decreasing pH. Hydrogen ions seem to act as a second coionic species. Of course, these system peaks are only visible in the UV signal if the BGE has UV-absorbing properties.  相似文献   

19.
The solution chemistry conditions necessary for optimum analysis of peptides by capillary zone electrophoresis (CZE)/electrospray ionization mass spectrometry and CZE electrospray ionization tandem mass spectrometry have been studied. To maximize the signal-to-noise ratio of the spectra it was found necessary to use acidic CZE buffers of low ionic strength. This not only increases the total ion current, but it also serves to fully protonate the peptides, minimizing the distribution of ion current across the ensemble of possible charge states. The use of acidic buffers protonates the peptides, which is advantageous for mass spectrometry and tandem mass spectrometry analysis, but is problematic with CZE when bare fused silica CZE columns are used. These conditions produce positively charged peptides, and negatively charged silanol moieties on the column wall, inducing adsorption of the positively charged peptides, thus causing zone broadening and a loss in separation efficiency. This problem was circumvented by the preparation of chemically modified CZE columns, which, when used with acidic CZE buffers, will have a positively charged inner column wall. The electrostatic repulsion between the positively charged peptides and the positively charged CZE column wall minimizes adsorption problems and facilitates high efficiency separations. Full-scan mass spectra were acquired from injections of as little as 160 fmols of test peptides, with CZE separation efficiencies of up to 250,000 theoretical plates.  相似文献   

20.
In systematic toxicological analysis (STA), analytical methods should have a high identification power. This can be suitably expressed by parameters such as mean list length (MLL) or discriminating power (DP). The reproducibility of a method has a great impact on its identification power, and should be as high as possible. In this study, two separation methods based on capillary zone electrophoresis (CZE) were evaluated towards STA applications. Besides a normal phosphate buffer, the commercially available buffer CElixir was used, which is a double-layer dynamic coating system. The coating stabilizes the endoosmotic flow, is independent of the pH, and is claimed to be more reproducible and faster at low pH than with normal buffers. A test set of 73 basic pharmaceutical compounds was analyzed by the two CZE methods. The total analysis time, including rinsing steps, was 8 min when the coating was used and 18 min without the coating. Effective mobilities were calculated and the reproducibilities were a factor of 2 better when the coating was used (between-days SD 0.020 and 0.040 m2/V s with and without the coating, respectively). MLL and DP were calculated for the two CZE methods and for combinations with standardized liquid and gas chromatography systems. CZE with CElixir coating clearly has a high potential for STA applications, as it was shown to have a higher identification power and shorter analysis times than normal CZE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号