首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO nanowhiskers are successfully fabricated on an anhydrous zinc acetate coated substrate by its in situ forced hydrolysis at the initial stage without pre-existing ZnO seeds or catalyst. HR-TEM clarified the formation mechanism that in situ forced hydrolysis of an anhydrous zinc acetate layer to ZnO nanocrystals at the initial stage promoted growth of ZnO nanowhiskers by heterogeneous nucleation and growth. ZnO nanowhiskers films show high transmittance over 80% in the visible range and bandgap energy of 3.29 eV. Porous semiconductor ZnO films show good photo-induced electrical properties after various concentrations of DNA molecules labeled with photoactive dye molecules were adsorbed. In situ forced hydrolysis-assisted technique at low temperature can be useful for the fabrication of optoelectronic devices with low cost and without using expensive catalyst.  相似文献   

2.
A simple, low-temperature strategy has been developed for the low-cost and large-area fabrication of ZnO nanoarrays on a zinc substrate by the natural oxidation of zinc metal in formamide/water mixtures. The one-step, wet-chemical approach has exhibited well-controlled growth of highly oriented and densely packed ZnO nanoarrays with large-area homogeneity and consisting of nanorods or nanowires with predictable morphologies, such as tunable diameters and identical lengths. The chemical-liquid-deposition process, an analogue to the widely used chemical-vapor-deposition technique, has been used for the near-room-temperature production of ZnO nanoarrays through continuous supply, transport, and thermal decomposition of zinc complexes in a liquid phase.  相似文献   

3.
We report on the growth of uniquely shaped ZnO nanowires with high surface area and patterned over large areas by using a poly(dimethylsiloxane) (PDMS) microfluidic channel technique. The synthesis uses first a patterned seed template fabricated by zinc acetate solution flowing though a microfluidic channel and then growth of ZnO nanowire at the seed using thermal chemical vapor deposition on a silicon substrate. Variations the ZnO nanowire by seed pattern formed within the microfluidic channel were also observed for different substrates and concentrations of the zinc acetate solution. The photocurrent properties of the patterned ZnO nanowires with high surface area, due to their unique shape, were also investigated. These specialized shapes and patterning technique increase the possibility of realizing one-dimensional nanostructure devices such as sensors and optoelectric devices.  相似文献   

4.
Luminescence properties of nanosized zinc oxide (ZnO) colloids depend greatly on their surface properties, which are in turn largely determined by the method of preparation. ZnO nanoparticles in the size range from 3 to 9 nm were prepared by addition of tetramethylammonium hydroxide ((CH3)4NOH) to an ethanolic zinc acetate solution. X-ray diffraction (XRD) indicates nanocrystalline ZnO membranes with polycrystalline hexagonal wurtzite structure. The ZnO membranes have a strong visible-emission intensity and the intensity depends upon hydrolysis time. The infrared spectra imply a variety of forms of zinc acetate complexes present on the surface of ZnO particles. The effect of the ZnO membrane surface properties on photoluminescence is discussed.  相似文献   

5.
碳酸二甲酯法合成1,5-二氨基甲酸甲酯的反应机理   总被引:2,自引:0,他引:2  
应用红外光谱技术研究了在乙酸锌催化作用下1,5-萘二胺与碳酸二甲酯甲氧基羰基化反应机理.结果表明,二水合乙酸锌只有失去两个结晶水变成无水乙酸锌后才能产生催化活性.无水乙酸锌与1,5-萘二胺形成一个新的配位络合物,该配位络合物是一个适宜的亲核试剂,能与碳酸二甲酯进行亲核反应,生成1,5-萘二胺的甲氧基羰基化产物.在无水乙酸锌与1,5-萘二胺形成配位络合物的过程中,无水乙酸锌的结构从双齿型转变成单齿型.  相似文献   

6.
 应用红外光谱技术研究了在乙酸锌催化作用下1,5-萘二胺与碳酸二甲酯甲氧基羰基化反应机理. 结果表明,二水合乙酸锌只有失去两个结晶水变成无水乙酸锌后才能产生催化活性. 无水乙酸锌与1,5-萘二胺形成一个新的配位络合物,该配位络合物是一个适宜的亲核试剂,能与碳酸二甲酯进行亲核反应,生成1,5-萘二胺的甲氧基羰基化产物. 在无水乙酸锌与1,5-萘二胺形成配位络合物的过程中,无水乙酸锌的结构从双齿型转变成单齿型.  相似文献   

7.
直接沉积法制备棒状ZnO   总被引:7,自引:0,他引:7  
在溶液体系中90 ℃下, 以三乙醇胺与醋酸锌为反应试剂, 用直接沉积法合成了微米及纳米尺寸的棒状ZnO粒子, 并对粒子进行了透射电镜(TEM)、X射线衍射(XRD)、热重(TG)和差热扫描量热分析(DSC)等表征. 通过晶体的成核和生长理论初步解释了棒状ZnO粒子的形成过程.  相似文献   

8.
Nanocrystalline zinc oxide particles were synthesized and simultaneously incorporated into a three-dimensional nanofibrous matrix of bacterial cellulose (BC) pellicles by a newly created method called “ultrasonic-assisted in situ synthesis”. The BC pellicles were first immersed in a zinc acetate solution. Then the Zn2+-absorbed BC pellicle was further immersed in ammonium hydroxide solution with simultaneous ultrasonic treatment. The effect of immersion time of the BC pellicles in zinc acetate solution and ultrasonic treatment time on crystalline size and percent incorporation of ZnO into the BC pellicles were determined. The crystalline size of ZnO incorporated in BC pellicles was in the range of ~54–63 nm that were similar to the diameter of BC nanofibrils. The amount of ZnO into the BC pellicles was found to increase with increasing immersion time. A longer ultrasonic treatment time resulted in smaller crystalline size of the incorporated ZnO. The particle size, morphology and dispersion of the synthesized ZnO in the BC matrix were examined by transmission electron microscope and scanning electron microscope with inbuilt energy dispersive X-ray analysis. The mechanism of the formation of the nanocrystalline ZnO particles onto the BC nanofibrils was discussed. Moreover, the antibacterial activity of the nanocrystalline ZnO particle-incorporated BC sheet against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) was also evaluated.  相似文献   

9.
Hybrid nanofibers of ZnO precursors/PET were fabricated by electrospinning a nonaqueous poly(ethylene terephthalate) (PET) solution containing zinc acetate dihydrate. Scanning electron microscopy images showed that the as prepared nanofibers had smooth and uniform surfaces, and the diameter was decreased with increasing zinc acetate dihydrate content and reducing PET concentration. After the treatment by a mild process of immersing the fibers in ammonia‐ethanol mixtures (pH ≈ 9–11), the surface of the nanofibers became rough during the formation of ZnO nanocrystals in the fibers. High resolution transmission electron microscopy images showed that the mean particle size became smaller with increasing diameter of the polymer fibers and decreasing content of ZnO. Fourier transform infrared spectra confirmed the ZnO formation in the hybrid nanofibers. X‐ray diffractometry patterns indicated that ZnO had the Wurtzite structure. The formation and growth of ZnO nanocrystals in the nanofiber matrices was also influenced by the various other parameters, that is, the pH value of the reaction solution, the content of zinc acetate dihydrate within the fibers, the reaction time and temperature. Photoluminescence spectra under excitation at 300 nm revealed a broad and intense ultraviolet emission. The UV‐visible diffuse reflectance spectra demonstrated the blue shift in the absorbance curve, which was ascribed to the quantum confinement effects of ZnO nanoparticles in the hybrid materials. These hybrid nanofibers can potentially be used in light emitters, chemical sensors, photo‐catalysts and solar cells. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1360–1368, 2011  相似文献   

10.
We present herein a simple protocol of growing a patterned ZnO nanowire by etching of ZnO seed layer in the tetramethyl ammonium hydroxide (TMAH) solution. The ZnO seed layer was fabricated by sol–gel method using zinc acetate solution and patterned by using photolithographic method. Patterned ZnO seed layer as etched in the TMAH solution, followed by growth of ZnO nanowires by hydrothermal method. Remarkable point of present ZnO seed layer patterning is that development of UV-exposed photoresist and etching of ZnO seed layer is subsequently processed in aqueous TMAH solution without interruption. The grown ZnO nanowires were analyzed using XRD patterns to exhibit high purity and degree of crystallinity, and showed very good pattern fidelity.  相似文献   

11.
Solution-grown zinc oxide nanowires   总被引:1,自引:0,他引:1  
We review two strategies for growing ZnO nanowires from zinc salts in aqueous and organic solvents. Wire arrays with diameters in the nanoscale regime can be grown in an aqueous solution of zinc nitrate and hexamethylenetetramine. With the addition of poly(ethylenimine), the lengths of the wires have been increased to 25 mum with aspect ratios over 125. Additionally, these arrays were made vertical by nucleating the wires from oriented ZnO nanocrystals. ZnO nanowire bundles have been produced by decomposing zinc acetate in trioctylamine. By the addition of a metal salt to the solution, the ZnO wires can be doped with a range of transition metals. Specifically, ZnO nanowires were homogeneously doped with cobalt and showed a marked deviation from paramagnetic behavior. We conclude by highlighting the use of these solution-grown nanowire arrays in dye-sensitized solar cells. The nanowire cells showed an improvement in the charge collection efficiency over traditional nanoparticle cells.  相似文献   

12.
《Comptes Rendus Chimie》2017,20(1):47-54
ZnO particles with different morphological forms and various scale sizes were successfully synthesized as photocatalysts using two different methods (sol–gel and precipitation) and three precursors (zinc acetate dihydrate, zinc nitrate hexahydrate, and zinc sulfate heptahydrate). These materials were calcined at 500 °C for 3 h and characterized by various physicochemical techniques such as X-ray diffraction, Fourier transform infrared, transmission electron microscopy, SBET, and UV–vis diffuse reflectance. The results showed that the crystalline structure, size, and morphology of the ZnO particles are strongly influenced by the preparation method and by the nature of the precursor used as reactant. The photocatalytic efficiency of the synthesized photocatalysts was evaluated by the photodegradation of methyl orange in aqueous solution under UV-A light. The results showed that the ZnO nanoparticles prepared the by sol–gel method from zinc acetate are more efficient than those prepared by the precipitation method.  相似文献   

13.
溶剂热法制备六角锥形ZnO及其光致发光性能   总被引:4,自引:0,他引:4  
通过乙酸锌和醇溶液反应得到了六角锥形纳米ZnO颗粒, 反应过程中不使用碱溶液和表面活性剂. 利用透射电子显微镜(TEM)、选区电子衍射(SAED)及扫描电子显微镜(SEM)对其形貌和结构进行了表征分析. 结果表明, 此方法制备的ZnO颗粒为单晶, 而且六角锥形ZnO的室温光致发光谱(PL)在378 nm处显示出了单纯的紫外发射峰, 而不是通常报道的可见光区发射, 这也预示着这种特殊结构的纳米ZnO将会成为一种具有良好应用前景的光学材料.  相似文献   

14.
ZnO complex nanostructure with special mushroom-like morphology was prepared by hydrolysis of zinc acetate dehydrate (Zn(CH3COO)2 2H2O) in water-methanol mixed solvent at 60 degrees C. The formation mechanism was studied using XRD investigation and FE-SEM observation, which showed that the mushroom-like particles were transformed from cauliflower-like layered basic zinc acetate (LBZA), Zn5(OH)8(CH3COO)22H2O, and composed of ZnO subunits with average size less than 10 nm. The introduction of hexamethylenetetramine (HMTA, C6H12N4) to the solution before deposition led to drastic changes in the morphologies of both aggregation particles and ZnO subunits. The novel ZnO microspheres, which were made of regular hexagonal plate-like ZnO with dimensional size 35 x 10 nm, were formed. These hexagonal plate-like ZnO subunits stacked very compactly and aligned regularly. Kinetic study of this unique complex nanostructure using TEM and FE-SEM observation showed the presence of HMTA played an important role on the formation of hexagonal ZnO subunits through different mechanisms related to the different parts of microspheres.  相似文献   

15.
Non-Basic Solution Routes to Prepare ZnO Nanoparticles   总被引:2,自引:0,他引:2  
Nanocrystalline ZnO particles were prepared from alcoholic solutions of zinc acetate dihydrate without using base such as NaOH or LiOH through a colloid process carried out at a low temperature of 60°C. A comparative study of chemical reactions from zinc acetate dihydrate to ZnO was made using different types of monool solvents, i.e. methanol, ethanol, and 2-methoxyethanol. It was revealed that layered hydroxide zinc acetate was formed as an intermediate and its transformation into ZnO was a key reaction step in any of the solutions. Reaction time necessary for the precipitation of ZnO was greatly influenced by the solvents used. Methanol was useful for the preparation of the ZnO nanoparticles, which were chemically pure in terms of cation impurities and exhibited green photoluminescence by the ultraviolet excitation.  相似文献   

16.
The simultaneous formation of nanometer sized zinc oxide (ZnO), and acetate zinc hydroxide double salt (Zn-HDS) is described. These phases, obtained using the sol-gel synthesis route based on zinc acetate salt in alcoholic media, were identified by direct characterization of the reaction products in solution using complementary techniques: nephelometry, in situ Small-Angle X-ray Scattering (SAXS), UV-Vis spectroscopy and Extended X-ray Absorption Fine Structures (EXAFS). In particular, the hydrolytic pathway of ethanolic zinc acetate precursor solutions promoted by addition of water with the molar ratio N=[H2O]/[Zn2+] = 0.05 was investigated in this paper. The aim was to understand the formation mechanism of ZnO colloidal suspension and to reveal the factors responsible for the formation of Zn-HDS in the final precipitates. The growth mechanism of ZnO nanoparticles is based on primary particle (radius ≈ 1.5 nm) rotation inside the primary aggregate (radius <3.5 nm) giving rise to an epitaxial attachment of particles and then subsequent coalescence. The growth of second ZnO aggregates is not associated with the Otswald ripening, and could be associated with changes in equilibrium between solute species induced by the superficial etching of Zn-HDS particles at the advanced stage of kinetic.  相似文献   

17.
双盘状ZnO的可控制备   总被引:1,自引:0,他引:1  
采用水热法制备了形貌可控、 尺寸均一的双盘状ZnO. X射线粉末衍射(XRD)、 扫描电子显微镜(SEM)及透射电子显微镜(TEM)等测试结果表明, 制备的ZnO具有六方纤锌矿结构, 由2个直径约为4 μm, 厚度约为600 nm的圆盘复合而成. 考察了反应温度和乙酸锌与柠檬酸钾的摩尔比对产物形貌与尺寸的影响, 实现了双盘状ZnO的可控合成, 并初步探讨了其形成机理. 荧光光谱显示, 双盘状ZnO的紫外发射峰半高宽约为10 nm, 比块体ZnO的紫外发射峰半高宽(18 nm)窄, 表明双盘状ZnO具有更好的光学特性.  相似文献   

18.
Nanocrystalline ZnO nanorods were successfully grown by ultrasonication using an acidic ethanolic zinc acetate precursor solution followed by a flow coating process and annealing at 600 °C. The ZnO nanorods obtained were hexagonal in shape and showed a high degree of uniformity in size and distribution. These samples were characterized by X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and Raman spectrophotometry and the results are discussed. This approach appears to be the easiest way to fabricate bulk ZnO nanorods.  相似文献   

19.
The liquid precipitation method using zinc acetate dihydrate was applied for the synthesis of uniform and spherical ZnO nanoparticles. The ultrafine zinc oxid was prepared in a water‐ethanol mixture solution. The solution containing zinc cation was soluble in water. The surface‐active agent triethanolamine (TEA) was soluble in ethanol. Then alkali precipitated by adding n‐propylamine. The spherical zinc oxide particle morphology was found to be highly dependent on the zinc salt concentration, ethanol‐water ratio, and the surface‐active agent additive. The process can produce white ZnO powder of 50–90 nm in size. The morphology of zinc oxide showed a powder shape by transmission electron microscopy (TEM), the crystallization phase structure of zinc oxide by X‐ray diffraction (XRD), and the zinc oxide remaining by using an organic analysis by infrared spectroscopy (IR).  相似文献   

20.
The paper presents, based on TG-DTG-DSC data, some results of the thermal decomposition of some complex sol-gel precursors used for the deposition of mesoporous ZnO/SiO2 nanocomposite thin films for gas sensing applications. The effect chemical composition of the sol and reagents mixing during the sol preparation is discussed. The chemical nature of ZnO source (zinc acetate solid salt, zinc acetate alcoholic solution or ZnO nanopowder) used for the sol preparation significantly affects the thermal decomposition of complex precursor and the microstructure and properties of the nanocomposite thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号