首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The local and average heat transfer characteristics of spoke like fins that extend outward from a rotating shaft have been determined experimentally. The experiments encompassed a number of geometrical parameters, including the length and chord of the fins, the number of fins deployed around the circumference of the shaft and the orientation angles of the fin. The experiments cover a wider range of rotational speeds, which varies from 25 up to 2,000 rpm. Three wire heat flux sensors have been used in conjunction with a slip ring apparatus to evaluate the local and average heat transfer coefficients. The output results indicated that, the heat transfer transition on rotating fins occurs at Reynolds number lower than encountered on the stationary rectangular fins in crossflow. In general, with non zero incidence angle, the rotating system acts as a fan and creates axial air motion, which enhance the heat transfer rate. However, the effect of orientation angle reduces with increasing the rotational speed. The Nusselt number data are independent of the number of fins in the circumferential array at high rotational speed and are weakly dependent at low Reynolds numbers. To facilitate the use of the results for design, correlations were developed which represent the fin heat transfer coefficient as a continuous function of the investigated independent parameters.  相似文献   

3.
The local and mean convective mass transfer coefficients from the surface of a large-diameter horizontal circular rotating cylinder without air jet flow were investigated by measuring the concentration gradient. The results indicate that rotation performs different effects on the convective mass transfer at different regions. Based on the experimental data, the correlation equations of the mean convective mass transfer Sherwood number Sh and the critical Reynolds number Re r,cri have been formulated as follows: $ Sh = 0.32[(8.5Re_{\text{r}}^{2} + Gr) \cdot Sc]^{1/3} $ and $ Re_{\text{r,cri}} = 0.44(Gr \cdot Sc)^{1/2} $ .  相似文献   

4.
 Impinging air jets are widely used in industry, for heating, cooling, drying, etc, because of the high heat transfer rates which is developed in the impingement region. To provide data for designers of industrial equipment, a large multi-nozzle rig was used to measure average heat transfer coefficients under arrays of both slot nozzles and circular holes. The aim of the present paper is to develop the relationship between heat transfer coefficient, air mass flow and fan power which is required for the optimum design of nozzle systems. The optimum free area was obtained directly from experimental results. The theory of optimum free area was analysed and good agreement was found between theoretical and experimental results. It was also possible to optimise the variables, to achieve minimum capital and running costs. Received on 21 November 2000 / Published online: 29 November 2001  相似文献   

5.
Almost all of the studies in dehumidifying coils are experimental studies. In this study, effect of tube regulation space on heat and mass transfer and friction factor for heat exchangers made from aluminum fins and cooper tubes are identified experimentally. External surface heat transfer coefficient, Colburn factor and friction factor was calculated by the help of the computer program by using experimental values done. After the diagrams investigated, with the decreasing of tube row spacing the external surface heat transfer in the dry surface and friction factor increased. If wet and dry surfaces are compared, Colburn and friction factor in wet surfaces is larger than Colburn and friction factor in dry surfaces.  相似文献   

6.
7.
This work deals with the local heat transfer coefficient evaluation over the fin of the second row of a staggered circular finned tube heat exchanger assembly. The coefficient distribution is determined by using a transient technique and by calculating the energy balance during the fin cooling. The calculation model takes into account radiation with the surrounding and lateral heat conduction into the material. The method uses infrared measurements and integration between time bounds that depend on space. It is proposed to choose the integration bounds with an original criterion based on local heat transfer. Validation is performed on the reference case consisting in a thin plate in an aerodynamically and thermally developing channel flow. Then, distributions of Nusselt number on the circular fin are presented for several Reynolds numbers. The high resolution of the whole method and set-up allow detecting thermal imprints of developing horseshoe vortices. These imprints are analyzed by following their angular evolution around the tube.  相似文献   

8.
9.
Heat transfer enhancement from cylindrical heat sources as electronic components established at the bottom of duct with in-line arrangement and also from the bottom by electrohydrodynamic (EHD) actuator has been investigated experimentally. Air flow is drawn to the duct with various Reynolds numbers based on hydraulic diameter of inlet of the test section (Re = 0, 500, 1100, 2500 and 3870) that include natural convection (confined and unconfined cases) and forced convection (laminar and turbulent flows). Wire electrodes are arranged in transverse direction and perpendicular to the main flow with two various arrangements and high voltages are applied up to 30 kV in the wires. The results revealed that the second electrode arrangement (three wires over the ribs) is more effective due to more enhancement of heat transfer and less corona power consumption in comparison with the first one (four wires between the ribs). Also the electric field is obviously more effective for low Reynolds numbers.  相似文献   

10.
In this study, nanofluids with different TiO2 nanoparticle concentrations were synthesized and measured in different constant heat fluxes for their heat transfer behavior upon flowing through a vertical pipe. Addition of nanoparticles into the base fluid enhances the forced convective heat transfer coefficient. The results show that the enhancement of the convective heat transfer coefficient in the mixture consisting of ethylene glycol and distilled water is more than distilled water as a base fluid.  相似文献   

11.
12.
This study paid attention to the effect of fluid temperatures on the forced convective flow drag and heat transfer characteristics of multi-wall carbon nanotube (MWNTs)-water suspensions without any surfactants. The experiments were carried out under the two fixed average fluid temperatures of 29 and 58°C. A horizontal small stainless steel tube with an inner diameter of 1.02 mm was used as the test section. The experiment results show that the flow drag characteristics of suspensions are almost the same as those of water. While the heat transfer of MWNTs suspensions with high mass concentration or high fluid temperature is significantly enhanced. The fluid temperature does not affect flow drag characteristics but has great effect on the heat transfer characteristics. Nanometer characteristics are presented by suspensions with high MWNT mass concentration or high temperature on convective heat transfer.  相似文献   

13.
A three-dimensional numerical study on the flow and heat transfer characteristics over a rotating disk surface with discrete pins was conducted by the use of RNG k–ε turbulent model. And some experiments were also made for validation. The effects of rotating angular speed and pin configuration on the temperature maps and convective heat transfer characteristics on the rotating surface were analyzed. As the increase of rotating velocity, the impingement of pumping jet on the centre of rotating disk becomes stronger and the transition from laminar to turbulent occurs at the outer radius of rotating disk, which resulting in heat transfer enhancement. The pins on the disk make the pumping action of a rotating disk weaker. Simultaneously, they also act as perturbing elements to the cyclone flow near the rotating disk surface, making the overall heat transfer to be enhanced. The needle pins have higher convective heat transfer capacity than the discrete ring pins with the same extend pin areas.  相似文献   

14.
The heat transfer from a rotating cylinder in an air-cross flow was investigated by purely optical measuring techniques. Flow velocities were measured by a two-dimensional LDV both in the vicinity of the cylinder and in the boundary layer. A new optical device based on light-deflection in a temperature field was developed to examine local temperature gradients in the boundary layer of the rotating cylinder. Finally, a Michelson-interferometer was installed to produce real-time pictures of isothermal lines around the heated cylinder. The impact of rotation on flow patterns, boundary layer behaviour and heat transfer could be clearly identified. It appears that the velocity-ratio acts like an independent parameter, in that flow patterns correspond to this dimensionless number. Furthermore, it seems that rotation dominates over cross flow, both fluid-dynamically and thermally above = 2.This work was carried out at the University of the Federal Armed Forces in Munich/Germany.  相似文献   

15.
The aim of the present study is to investigate experimentally the effect of the fluted surface tube on the heat transfer and flow characteristics of liquid falling film. Experiments have indicated that, when a liquid falling film falls on a horizontal fluted surface tube, the transition starts at low Reynolds number than that of the plain tube. The value of the film thickness has been slightly decreased by decreasing the fluted pitch. A reduction of the film thickness was observed at about 9% for tube number 4, which has lower pitch, at Reynolds number of 485. A clear reduction of the dimensionless wavelength, λ*, has occurred at low fluted pitch tube. The use of enhanced surfaces can provide heat transfer coefficients higher values than those obtained from plain tube. Heat transfer enhancement was noticed due to the use of fluted tube surface. An improvement of the Nusselt number reached about 45% for tube 4. However, the low values of the fluted pitch increased the heat transfer enhancement than that of the high values.  相似文献   

16.
Research on convective heat transfer coefficient around a rod bundle has many diverse applications in industry. So far, many studies have been conducted in correlations related to internal and turbulent fully-developed flow. Comparison shows that Dittus-Boelter, Sieder-Tate and Petukhov have so far been the most practical correlations in fully-developed turbulent fluid flow heat transfer. The present study conducts an experimental examination of the validity of these frequently-applied correlations and introduces a manufactured test facility as well. Due to its generalizibility, the unique geometry of this test facility (hexagonal arranged, 7 vertical rods in a hexagonal tube) can fulfil extensive applications. The paper also studies the major deviation sources in data measurements, calibrations and turbulence of fluid flow in this. Finally, regarding to sufficient number of experiments in a vast fluid mean velocity range (3,800?<?Re?<?40,000), a new curve and correlation are presented and the results are compared with the above mentioned commonly-applied correlations.  相似文献   

17.
This paper reports the numerical modeling of turbulent flow and convective heat transfer over a wavy wall using a two equations eddy viscosity turbulence model. The wall boundary conditions were applied by using a new zonal modeling strategy based on DNS data and combining the standard k– turbulence model in the outer core flow with a one equation model to resolve the near-wall region.It was found that the two-layer model is successful in capturing most of the important physical features of a turbulent flow over a wavy wall with reasonable amount of memory storage and computer time. The predicted results show the shortcomings of the standard law of the wall for predicting such type of flows and consequently suggest that direct integrations to the wall must be used instead. Moreover, Comparison of the predicted results of a wavy wall with that of a straight channel, indicates that the averaged Nusselt number increases until a critical value is reached where the amplitude wave is increased. However, this heat transfer enhancement is accompanied by an increase in the pressure drop.  相似文献   

18.
In this experimental study, we address transport processes in a mixed convective flow over a heated wavy surface. Therefore, we combine digital particle image velocimetry (DPIV) and two-color planar laser induced fluorescence (PLIF) to simultaneously measure the velocity and temperature field. For this, we propose to use the dye combination Rhodamine B and Rhodamine 110, both excited with the Nd:YAG laser also used for the PIV measurements. We investigate the influence of mixed convection over a wavy surface on the velocity field, turbulence statistics, the temperature field and the heat flux. By computing these quantities we find a correlation between the maximum in the Reynolds stress profiles and the components of the heat flux vector, thus regions of maximum momentum and scalar transport coincide. In addition, we apply a proper orthogonal decomposition (POD) to extract the most dominant flow structures in a measurement plane above the wavy surface. This first POD mode is identified as streamwise-oriented, counter-rotating vortices whose spanwise scaling is also correlated with the maximum of heat flux.  相似文献   

19.
In the present study, the heat transfer characteristics in dry surface conditions of a new type of heat exchanger, namely a helically coiled finned tube heat exchanger, is experimentally investigated. The test section, which is a helically coiled fined tube heat exchanger, consists of a shell and a helical coil unit. The helical coil unit consists of four concentric helically coiled tubes of different diameters. Each tube is constructed by bending straight copper tube into a helical coil. Aluminium crimped spiral fins with thickness of 0.5 mm and outer diameter of 28.25 mm are placed around the tube. The edge of fin at the inner diameter is corrugated. Ambient air is used as a working fluid in the shell side while hot water is used for the tube-side. The test runs are done at air mass flow rates ranging between 0.04 and 0.13 kg/s. The water mass flow rates are between 0.2 and 0.4 kg/s. The water temperatures are between 40 and 50°C. The effects of the inlet conditions of both working fluids flowing through the heat exchanger on the heat transfer coefficients are discussed. The air-side heat transfer coefficient presented in term of the Colburn J factor is proportional to inlet-water temperature and water mass flow rate. The heat exchanger effectiveness tends to increase with increasing water mass flow rate and also slightly increases with increasing inlet water temperature.  相似文献   

20.
Comparative numerical study of laminar heat transfer characteristics of annular tubes with sinusoidal wavy fins has been conducted both experimentally and numerically with Re = 299–1,475. The uniform heat flux is imposed on the tube outside wall surface. Two tube materials (copper and stainless steel) are considered. It is found that the fluid temperature profile is not linear but convex along the flow direction due to the axial heat conduction in tube wall, and the effects of axial heat conduction on the heat transfer decreases with an increase in Reynolds number or decrease in tube wall thermal conductivity. The axial distributions of local Nusselt number could reach periodically fully developed after 3–5 cycles. The convectional data reduction method based on the traditional method should be improved for tube with high thermal conductivity or low Reynolds numbers, Otherwise, the heat transfer performance of internally finned tube may be underestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号