共查询到20条相似文献,搜索用时 0 毫秒
1.
An improved boundary element-free method (IBEFM) for two-dimensional potential problems 总被引:1,自引:0,他引:1 下载免费PDF全文
The interpolating moving least-squares (IMLS) method is discussed
first in this paper. And the formulae of the IMLS method obtained by
Lancaster are revised. Then on the basis of the boundary
element-free method (BEFM), combining the boundary integral equation
(BIE) method with the IMLS method, the improved boundary
element-free method (IBEFM) for two-dimensional potential problems
is presented, and the corresponding formulae of the IBEFM are
obtained. In the BEFM, boundary conditions are applied directly, but
the shape function in the MLS does not satisfy the property of
the Kronecker δ function. This is a problem of the BEFM, and
must be solved theoretically. In the IMLS method, when the shape function
satisfies the property of the Kronecker δ function, then the
boundary conditions, in the meshless method based on the IMLS
method, can be applied directly. Then the IBEFM, based on the IMLS
method, is a direct meshless boundary integral equation method in
which the basic unknown quantity is the real solution of the nodal
variables, and the boundary conditions can be applied directly and
easily, thus it gives a greater computational precision. Some
numerical examples are presented to demonstrate the method. 相似文献
2.
Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method. 相似文献
3.
将重构核粒子法(RKPM)和边界积分方程方法结合,提出了一种新的边界积分方程无网格方法——重构核粒子边界无单元法(RKP-BEFM).对弹性力学问题,推导了其重构核粒子边界无单元法的公式,研究其数值积分方案,建立了重构核粒子边界无单元法离散化边界积分方程,并推导了重构核粒子边界无单元法的内点位移和应力积分公式.重构核粒子法形成的形函数具有重构核函数的光滑性,且能再现多项式在插值点的精确值,所以本方法具有更高的精度.最后给出了数值算例,验证了本方法的有效性和正确性.
关键词:
重构核粒子法
弹性力学
边界无单元法 相似文献
4.
An improved complex variable element-free Galerkin method for two-dimensional elasticity problems 下载免费PDF全文
In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFG method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method. 相似文献
5.
6.
An improved interpolating element-free Galerkin method with nonsingular weight function for two-dimensional potential problems 下载免费PDF全文
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of Kronecker δ function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. And the number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has a higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method. 相似文献
7.
An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems 下载免费PDF全文
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker δ function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method. 相似文献
8.
基于移动最小二乘法在Sobolev空间Wk,p(Ω)中的误差估计以及弹性力学问题的变分弱形式中出现的双线性形式的连续性和强制性,研究了弹性力学问题的无单元Galerkin方法的误差分析以及数值解的误差和影响域半径之间的关系,给出了弹性力学问题的无单元Galerkin方法在Sobolev空间中的误差估计定理,并证明了当节点和形函数满足一定条件时该误差估计是最优阶的.从误差分析中可以看出,数值解的误差与权函数的影响域半径密切相关.最后,通过算例验证了结论的正确性.
关键词:
无网格方法
无单元Galerkin方法
弹性力学
误差估计 相似文献
9.
A generalized Fisher equation(GFE) relates the time derivative of the average of the intrinsic rate of growth to its variance.The exact mathematical result of the GFE has been widely used in population dynamics and genetics,where it originated.Many researchers have studied the numerical solutions of the GFE,up to now.In this paper,we introduce an element-free Galerkin(EFG) method based on the moving least-square approximation to approximate positive solutions of the GFE from population dynamics.Compared with other numerical methods,the EFG method for the GFE needs only scattered nodes instead of meshing the domain of the problem.The Galerkin weak form is used to obtain the discrete equations,and the essential boundary conditions are enforced by the penalty method.In comparison with the traditional method,numerical solutions show that the new method has higher accuracy and better convergence.Several numerical examples are presented to demonstrate the effectiveness of the method. 相似文献
10.
The improved element-free Galerkin(IEFG) method of elasticity is used to solve the topology optimization problems.In this method, the improved moving least-squares approximation is used to form the shape function. In a topology optimization process, the entire structure volume is considered as the constraint. From the solid isotropic microstructures with penalization, we select relative node density as a design variable. Then we choose the minimization of compliance to be an objective function, and compute its sensitivity with the adjoint method. The IEFG method in this paper can overcome the disadvantages of the singular matrices that sometimes appear in conventional element-free Galerkin(EFG) method. The central processing unit(CPU) time of each example is given to show that the IEFG method is more efficient than the EFG method under the same precision, and the advantage that the IEFG method does not form singular matrices is also shown. 相似文献
11.
Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper. The Galerkin weak form is employed to obtain the equation system, and the penalty method is used to apply the essential boundary conditions, then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method, with the same node distribution, the CVEFG method has higher precision, and to obtain the similar precision, the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method. 相似文献
12.
在高维情况下,首先研究了无单元Galerkin方法的形函数构造方法——移动最小二乘法在Sobolev空间Wk,p(Ω)中的误差估计.然后,在势问题的无单元Galerkin方法的基础上,研究了势问题的通过罚函数法施加本质边界条件的无单元Galerkin方法在Sobolev空间中的误差估计.当节点和形函数满足一定条件时,证明了该误差估计是最优阶的.从误差分析中可以看出,数值解的误差与权函数的影响半径密切相关.最后,通过算例验证了结论的正确性.
关键词:
无网格方法
无单元Galerkin方法
势问题
误差估计 相似文献
13.
14.
The improved element-free Galerkin method for three-dimensional transient heat conduction problems 总被引:2,自引:0,他引:2
With the improved moving least-squares (IMLS) approximation, an orthogonal function system with a weight function is used as the basis function. The combination of the element-free Galerkin (EFG) method and the IMLS approximation leads to the development of the improved element-free Galerkin (IEFG) method. In this paper, the IEFG method is applied to study the partial differential equations that control the heat flow in three-dimensional space. With the IEFG technique, the Galerkin weak form is employed to develop the discretized system equations, and the penalty method is applied to impose the essential boundary conditions. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the transient heat conduction equations and the boundary and initial conditions are time dependent, the scaling parameter, number of nodes and time step length are considered in a convergence study. 相似文献
15.
This paper is devoted to developing a multi-material numerical scheme for non-linear elastic solids, with emphasis on the inclusion of interfacial boundary conditions. In particular for colliding solid objects it is desirable to allow large deformations and relative slide, whilst employing fixed grids and maintaining sharp interfaces. Existing schemes utilising interface tracking methods such as volume-of-fluid typically introduce erroneous transport of tangential momentum across material boundaries. Aside from combatting these difficulties one can also make improvements in a numerical scheme for multiple compressible solids by utilising governing models that facilitate application of high-order shock capturing methods developed for hydrodynamics. A numerical scheme that simultaneously allows for sliding boundaries and utilises such high-order shock capturing methods has not yet been demonstrated. A scheme is proposed here that directly addresses these challenges by extending a ghost cell method for gas-dynamics to solid mechanics, by using a first-order model for elastic materials in conservative form. Interface interactions are captured using the solution of a multi-material Riemann problem which is derived in detail. Several different boundary conditions are considered including solid/solid and solid/vacuum contact problems. Interfaces are tracked using level-set functions. The underlying single material numerical method includes a characteristic based Riemann solver and high-order WENO reconstruction. Numerical solutions of example multi-material problems are provided in comparison to exact solutions for the one-dimensional augmented system, and for a two-dimensional friction experiment. 相似文献
16.
A new complex variable element-free Galerkin method for two-dimensional potential problems 下载免费PDF全文
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method. 相似文献
17.
An element-free Galerkin(EFG) method for numerical solution of the coupled Schrdinger-KdV equations 下载免费PDF全文
The present paper deals with the numerical solution of the coupled Schrdinger-KdV equations using the elementfree Galerkin(EFG) method which is based on the moving least-square approximation.Instead of traditional mesh oriented methods such as the finite difference method(FDM) and the finite element method(FEM),this method needs only scattered nodes in the domain.For this scheme,a variational method is used to obtain discrete equations and the essential boundary conditions are enforced by the penalty method.In numerical experiments,the results are presented and compared with the findings of the finite element method,the radial basis functions method,and an analytical solution to confirm the good accuracy of the presented scheme. 相似文献
18.
Boundary element-free method for elastodynamics 总被引:3,自引:0,他引:3
CHENG Yumin & PENG Miaojuan . Shanghai Institute of Applied Mathematics Mechanics Shanghai University Shanghai China . Department of Civil Engineering Shanghai University Shanghai China 《中国科学G辑(英文版)》2005,48(6):641-657
1 Introduction In recent years, more and more attention has been paid to researches on the meshless (or meshfree) method, which makes it a hot direction of computational mechanics[1,2]. The meshless method is the approximation based on nodes, then the large deformation and crack growth problems can be simulated with the method without the re-meshing technique. And the meshless method has some advantages over the traditional computa- tional methods, such as finite element method (FEM) and boun… 相似文献
19.
The moving least-square approximation is discussed first. Sometimes the method can form an ill-conditioned equation system,
and thus the solution cannot be obtained correctly. A Hilbert space is presented on which an orthogonal function system mixed
a weight function is defined. Next the improved moving least-square approximation is discussed in detail. The improved method
has higher computational efficiency and precision than the old method, and cannot form an ill-conditioned equation system.
A boundary element-free method (BEFM) for elastodynamics problems is presented by combining the boundary integral equation
method for elastodynamics and the improved moving least-square approximation. The boundary element-free method is a meshless
method of boundary integral equation and is a direct numerical method compared with others, in which the basic unknowns are
the real solutions of the nodal variables and the boundary conditions can be applied easily. The boundary element-free method
has a higher computational efficiency and precision. In addition, the numerical procedure of the boundary element-free method
for elastodynamics problems is presented in this paper. Finally, some numerical examples are given. 相似文献
20.
An interpolating reproducing kernel particle method for two-dimensional(2D) scatter points is introduced. It eliminates the dependency of gridding in numerical calculations. The interpolating shape function in the interpolating reproducing kernel particle method satisfies the property of the Kronecker delta function. This method offers a mathematics basis for recognition technology and simulation analysis, which can be expressed as simultaneous differential equations in science or project problems. Mathematical examples are given to show the validity of the interpolating reproducing kernel particle method. 相似文献