首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using an analogy between thermal conductivity of porous media and viscosity in two-phase flow, new definitions for two-phase viscosity are proposed. These new definitions satisfy the following two conditions: namely (i) the two-phase viscosity is equal to the liquid viscosity at the mass quality = 0% and (ii) the two-phase viscosity is equal to the gas viscosity at the mass quality = 100%. These new definitions can be used to compute the two-phase frictional pressure gradient using the homogeneous modeling approach. These new models are assessed using published experimental data of two-phase frictional pressure gradient in circular pipes, minichannels and microchannels in the form of Fanning friction factor (fm) versus Reynolds number (Rem). The published data include different working fluids such as R-12, R-22, argon (R740), R717, R134a, R410A and propane (R290) at different diameters and different saturation temperatures. Models are assessed on the basis minimizing the root mean square error (eRMS). It is shown that these new definitions of two-phase viscosity can be used to analyze the experimental data of two-phase frictional pressure gradient in circular pipes, minichannels and microchannels using simple friction models.  相似文献   

2.
Laminar-to-turbulent flow transition in microchannels can be useful to enhance mixing and heat transfer in microsystems. Typically, the small characteristic dimensions of these devices hinder in attaining higher Reynolds numbers to limit the total pressure drop. This is true especially in the presence of a liquid as a working medium. On the contrary, due to lower density, Reynolds number larger than 2000 can be easily reached for gas microflows with an acceptable pressure drop. Since microchannels are used as elementary building blocks of micro heat exchangers and micro heat-sinks, it is essential to predict under which conditions, the laminar-to-turbulent flow transition inside such geometries can be expected. In this paper, experimental validation of a two equations transitional turbulence model, capable of predicting the laminar-to-turbulent flow transition for internal flows as proposed by Abraham etal. (2008), is presented for the first time for microchannels. This is done by employing microchannels in which Nitrogen gas is used as a working fluid. Two different cross-sections namely circular and rectangular are utilized for numerical and experimental investigations. The inlet mass flow rate of the gas is varied to cover all the flow regimes from laminar to fully turbulent flow. Pressure loss experiments are performed for both cross-sectional geometries and friction factor results from experiments and numerical simulations are compared. From the analysis of the friction factor as a function of the Reynolds number, the critical value of the Reynolds number linked to the laminar-to-turbulent transition has been determined. The experimental and numerical critical Reynolds number for all the tested microchannels showed a maximum deviation of less than 12%. These results demonstrate that the transitional turbulence model proposed by Abraham etal. (2008) for internal flows can be extended to microchannels and proficiently employed for the design of micro heat exchangers in presence of gas flows.  相似文献   

3.
The Characterization of the effects of surface wettability and geometry on pressure drop of slug flow in isothermal horizontal microchannels is investigated for circular and square channels with hydraulic diameter (D h ) of 700 μm. Flow visualization is employed to characterize the bubble in slug flow established in microchannels of various surface wettabilities. Pressure drop increases with decrease in surface wettability, while the channel geometry influences slug frequency. It is observed that the gas–liquid contact line in advancing and receding interfaces of bubble change with surface wettability in slug flows. Flow resistance, where capillary force is important, is estimated using Laplace–Young equation considering the change of dynamic contact angles of bubble. The experimental study also demonstrates that the liquid film presence elucidates the pressure drop variation of slug flows at various surface wettabilities due to diminishing capillary effect.  相似文献   

4.
This paper reports a numerical study of double diffusive natural convection in a vertical porous enclosure with localized heating and salting from one side. The physical model for the momentum conservation equation makes use of the Darcy equation, and the set of coupled equations is solved using the finite-volume methodology together with the deferred central difference scheme. An extensive series of numerical simulations is conducted in the range of −10 ⩽ N ⩽ + 10, 0 ⩽ R t ⩽ 200, 10−2Le ⩽ 200, and 0.125 ⩽ L ⩽ 0.875, where N, R t , Le, and L are the buoyancy ratio, Darcy-modified thermal Rayleigh number, Lewis number, and the segment location. Streamlines, heatlines, masslines, isotherms, and iso-concentrations are produced for several segment locations to illustrate the flow structure transition from solutal-dominated opposing to thermal dominated and solutal-dominated aiding flows, respectively. The segment location combining with thermal Rayleigh number and Lewis number is found to influence the buoyancy ratio at which flow transition and flow reversal occurs. The computed average Nusselt and Sherwood numbers provide guidance for locating the heating and salting segment.  相似文献   

5.
Forced convective heat transfer coefficients and friction factors for flow of water in microchannels with a rectangular cross section were measured. An integrated microsystem consisting of five microchannels on one side and a localized heater and seven polysilicon temperature sensors along the selected channels on the other side was fabricated using a double-polished-prime silicon wafer. For the microchannels tested, the friction factor constant obtained are values between 53.7 and 60.4, which are close to the theoretical value from a correlation for macroscopic dimension, 56.9 for D h  = 100 μm. The heat transfer coefficients obtained by measuring the wall temperature along the micro channels were linearly dependent on the wall temperature, in turn, the heat transfer mechanism is strongly dependent on the fluid properties such as viscosity. The measured Nusselt number in the laminar flow regime tested could be correlated by which is quite different from the constant value obtained in macrochannels.  相似文献   

6.
Comparative study has been performed with various channel cross-sectional shapes and channel configurations of a zigzag printed circuit heat exchanger (PCHE), which has been considered as a heat exchanging device for the gas turbine based generation systems. Three-dimensional Reynolds-averaged Navier–Stokes equations and heat transfer equations are solved to analyze conjugate heat transfer in the zigzag channels. The shear stress transport model with a low Reynolds number wall treatment is used as a turbulence closure. The global Nusselt number, Colburn j-factor, effectiveness, and friction factor are used to estimate the thermal–hydraulic performance of the PCHE. Four different shapes of channel cross section (semicircular, rectangular, trapezoidal, and circular) and four different channel configurations are tested to determine their effects on thermal–hydraulic performance. The rectangular channel shows the best thermal performance but the worst hydraulic performance, while the circular channel shows the worst thermal performance. The Colburn j-factor and friction factor are found to be inversely proportional to the Reynolds number in cold channels, while the effectiveness and global Nusselt number are proportional to the Reynolds number.  相似文献   

7.
In this work, an experimental investigation on cooling performance of using nanofluid to replace the pure water as the coolant in a minichannel heat sink is conducted. The heat sink comprises of four circular channels with hydraulic diameter of 6 mm. Thermal and hydraulic performances of the nanofluid cooled minichannel heat sink are evaluated from the results obtained for the Nusselt number, friction factor, thermal resistance and pumping power, with the volume flow rate ranging from 0.3 to 1.5 L/min. The experimental results show that the nanofluid cooled heat sink outperforms the water-cooled one, having significantly higher average heat transfer coefficient. Despite the marked increase in dynamic viscosity due to dispersing the nanoparticles in water, the friction factor for the nanofluid-cooled heat sink is found slightly increased only.  相似文献   

8.
Problems of flows in the initial sections of plane, circular and annular channels are solved by numerical integration of the Navier-Stokes equations on the interval 10 Rb, 3000. The initial section is considered to be the part of the flow where the local Reynolds number does not exceed the critical value.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 187–190, March–April, 1987.  相似文献   

9.
Understanding bubble dynamics is critical to the design and optimization of two-phase microchannel heat sinks. This paper presents a hybrid experimental and computational methodology that reconstructs the three-dimensional bubble geometry, as well as provides other critical information associated with nucleating bubbles in microchannels. Rectangular cross-section silicon microchannels with hydraulic diameters less than 200 μm were fabricated with integrated heaters for the flow experiments, and the working liquid used was water. Bubbles formed via heterogeneous nucleation and were observed to grow from the silicon side walls of the channels. Two-dimensional images and two-component liquid velocity field measurements during bubble growth were obtained using micron-resolution particle image velocimetry (μPIV). These measurements were combined with iterative three-dimensional numerical simulations using finite element software, FEMLAB. The three-dimensional shape and location of the bubble were quantified by identifying the geometry that provided the best match between the computed flow field and the μPIV data. The reconstructed flow field through this process reproduced the experimental data within an error of 10–20%. Other important information such as contact angles and bubble growth rates can also be estimated from this methodology. This work is an important step toward understanding the physical mechanisms behind bubble growth and departure.  相似文献   

10.
Flow and heat transfer for gas flowing in microchannels: a review   总被引:3,自引:0,他引:3  
 Microchannels are currently being used in many areas and have high potential for applications in many other areas, which are considered realistic by experts. The application areas include medicine, biotechnology, avionics, consumer electronics, telecommunications, metrology, computer technology, office equipment and home appliances, safety technology, process engineering, robotics, automotive engineering and environmental protection. A number of these applications are introduced in this paper, followed by a critical review of the works on the flow and heat transfer for gas flowing in microchannels. The results show that the flow and heat transfer characteristics of a gas flowing in microchannels can not be adequately predicted by the theories and correlations developed for conventional sized channels. The results of theoretical and experimental works are discussed and summarized along with suggestions for future research directions. Received on 26 June 2000 / Published online: 29 November 2001  相似文献   

11.
12.
Results of a numerical study of three-dimensional supersonic jets propagating in a cocurrent flow are described. Averaged parabolized Navier-Stokes equations are solved numerically on the basis of a developed scheme, which allows calculations in supersonic and subsonic flow regions to be performed in a single manner. A jet flow with a cocurrent flow Mach number 0.05 ⩽ M ⩽ 7.00 is studied, and its effect on the structure of the mixing layer is demonstrated. The calculated results are compared with available experimental and numerical data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 3, pp. 54–63, May–June, 2008.  相似文献   

13.
There is an increase in the mineral content of human dentin with aging.Due to the consequent changes in the mineral to the collagen ratio,this process may influence the degree of hydrogen bonding that occurs with the loss of water and the extent of shrinkage as a result of dehydration.Thus,the objective of this investigation is to quantify the differences in the dehydration shrinkage of human dentin with patient age.Specimens of coronal dentin are prepared from the molars of young(23 age 34) and old(52 age 62) patients,and then maintained in storage solutions of water or hanks balanced salt solutions(HBSS).Dimensional changes of the dentin specimens occurring over periods of free convection are evaluated by using the microscopic digital image correlation(DIC).The results distinguish that the shrinkage of the young dentin is significantly larger than that of the old dentin,regardless of the orientation and period of the storage.The strains parallel to the tubules increase with proximity to the dentin enamel junction(DEJ),whereas the shrinkage strains in the transverse direction are the largest in the deep dentin(i.e.,near the pulp).The degree of anisotropy in the shrinkage increases from the pulp to the DEJ,and is the largest in the young dentin.  相似文献   

14.
The heat transfer coefficients of the evaporative water flow in mini/microchannels are studied experimentally to explore the novel heat dissipation for high power electronics. Two sets of parallel channels which are 61 channels with hydraulic diameter of 0.293 mm and 20 channels with hydraulic diameter of 1.2 mm are investigated respectively. The inlet and outlet temperatures of fluids, and the temperatures beneath the channels are measured to calculate the heat dissipation of the evaporative water in channels. The experiments are carried out with the mass flow rates range from 11.09 kg/(m2 s) to 44.36 kg/(m2 s) for minichannels and 49.59 kg/(m2 s) to 198.37 kg/(m2 s) for microchannels. The effective heat flux range from 5 W/cm2 to 50 W/cm2, and the resulted outlet vapor qualities range from 0 to 0.8. The relations of the heat transfer coefficient with heat flux and vapor quality are analyzed according to the results. The experimental heat transfer coefficients are compared with the prediction of latest developed correlations. A new correlation takes the effect of Bond number is proposed, and be verified that it is effective to predict the heat transfer coefficient of both minichannels and microchannels in a large range of vapor qualities.  相似文献   

15.
Experiments are conducted with a perfluorinated dielectric fluid, Fluorinert FC-77, to identify the critical geometric parameters that affect flow boiling heat transfer and flow patterns in microchannels. In recent work by the authors (Harirchian and Garimella, 2009), seven different silicon test pieces containing parallel microchannels of widths ranging from 100 to 5850 μm, all with a depth of 400 μm were tested and it was shown that for a fixed channel depth, the heat transfer coefficient was independent of channel width for microchannels of widths 400 μm and larger, with the flow regimes in these microchannels being similar; nucleate boiling was also found to be dominant over a wide range of heat fluxes. In the present study, experiments are performed with five additional microchannel test pieces with channel depths of 100 and 250 μm and widths ranging from 100 to 1000 μm. Flow visualizations are performed using a high-speed digital video camera to determine the flow regimes, with simultaneous local measurements of the heat transfer coefficient and pressure drop. The aim of the present study is to investigate as independent parameters the channel width and depth as well as the aspect ratio and cross-sectional area on boiling heat transfer in microchannels, based on an expanded database of experimental results. The flow visualizations and heat transfer results show that the channel cross-sectional area is the important governing parameter determining boiling mechanisms and heat transfer in microchannels. For channels with cross-sectional area exceeding a specific value, nucleate boiling is the dominant mechanism and the boiling heat transfer coefficient is independent of channel dimensions; below this threshold value of cross-sectional area, vapor confinement is observed in all channels at all heat fluxes, and the heat transfer rate increases as the microchannel cross-sectional area decreases before premature dryout occurs due to channel confinement.  相似文献   

16.
A Stepped circular pin-fin array is formulated numerically and optimized with Kriging metamodeling technique to enhance heat transfer performance. The problem is defined by two non-dimensional geometric design variables composed of height of the channel, height of smaller diameter part of the pin-fins, and smaller diameter of the pin-fins, to maximize heat transfer rate compromising with friction loss. Ten designs generated by Latin hypercube sampling were evaluated by three-dimensional Reynolds-averaged Navier–Stokes solver and the evaluated objectives were used to construct the surrogate model. The predictions of objective function by Kriging model at optimum point show reasonable accuracy in comparison with the values calculated by RANS analysis. Optimum shape of pin-fins strongly depends on the weighting factor which measures importance of the friction loss term in the objective function. The thermal performances are much higher than that of the straight pin-fin at sampling optimum points with different weighting factors.  相似文献   

17.
The object of this paper is to present accurate numerical data concerning the creeping flow in curved annular channels with rectangular cross sections of which the outer wall is rotating with constant angular velocity. Dimensionless expressions for velocity profiles, flow rates and friction factors are obtained analytically for both the “drag” and “pressure” flow contributions. Numerical data were obtained on a digital computer and are presented in tabular and graphical form. The results of the theoretical analysis are also expressed in terms of the flow rate correction factors widely used in calculating the pumping efficiency of screw-pumps, agitators and extruders. This enables to estimate the effect of flight curvature on the pumping capacity.  相似文献   

18.
 The laminar and parallel flow of a Newtonian fluid in a vertical cylindrical duct with circular cross section has been analysed. Both the viscous dissipation effect and the buoyancy effect have been taken into account. The momentum balance equation and the energy balance equation have been solved by means of a perturbation method, in the case of a uniform heat flux prescribed at the wall of the duct. The velocity distribution, the temperature distribution, the Nusselt number and the Fanning friction factor have been evaluated analytically. Moreover, the velocity and temperature of the fluid have been compared with those obtained in two special cases: forced convection with viscous dissipation (i.e. negligible buoyancy effect); mixed convection with negligible effects of viscous dissipation. Received on 26 June 2000  相似文献   

19.
In Microfluidics, a large deviation in the published experimental data on the dynamic and thermal behavior of microflows has been observed with respect to the classical theory but, from a chronological analysis of these experimental results, it can be realized how the deviations in the behavior of fluid flows through microchannels from that through large-sized channels are decreasing. Today, it seems to be clear that some of the inconsistencies in the data were originated from the experimental methods used for the investigation of convective microflows. This fact highlights the need for the development of specific measurement techniques for Microfluidics. In this work, we explore and categorize different approaches found in literature for measuring microflow characteristics, especially for gas flows, and the geometry of the microchannels pointing out the advantages and disadvantages inherent to each experimental technique. Starting from the operative definition of friction factor, the main parameters that must be checked in an experimental work in order to characterize the flow are reviewed. A discussion based on uncertainty analysis will be presented in order to individuate the main operative parameters that one must be able to measure accurately to determine pressure drop in the microchannels with a low level of uncertainty. In the paper each measurement technique is critically analysed to evidence the important issues which may have been overlooked in previous researches. The main goal of this study is to give a summary of experimental procedure and a useful guideline for experimental research in Microfluidics.  相似文献   

20.
An analytical solution is developed for conjugate heat transfer in a flat-plate heat exchanger with circular embedded channels. The analysis was carried out for fully-developed conditions in the circular tube and uniform heat flux at the plate boundary. The results are applicable to cooling channels that are 50 μm or more in diameter with a large length–diameter ratio. The thermal characteristics of the heat exchanger have been examined for a wide range of the relevant independent parameters and optimum designs for three different sets of constraints have been presented. It was found that the overall thermal resistance increases with the depth of the tube from the heated surface, as well as the spacing between the tubes. For a given combination of tubes’ depth and spacing, there is a certain tube diameter at which the thermal resistance attains a minimum value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号