首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We demonstrate a 1047 nm Nd:LiYF4 (Nd:YLF) laser by directly pumping into the upper lasing level with a tunable Ti:Sapphire laser. The results obtained for direct upper laser level pumping at 863, 872 and 880 nm of Nd:YLF were compared with traditional 806 nm pump band excitation. Highly efficient 1047 nm continuous-wave (CW) laser emission under direct pumping at 880 nm in an 8 mm thick, 1.0 at.% Nd:YLF crystal is obtained. The slope efficiency is improved from 55.6% for traditional pumping at 806 nm to 76.3% for direct pumping at 880 nm.  相似文献   

2.
We report for the first time (to our knowledge) an efficient compact red laser at 660.5 nm generation by intracavity frequency doubling of a continuous wave laser operation of a diode direct pumped Nd:YLiF4 (Nd:YLF) laser on the 4 F 3/24 I 13/2 transition at 1321 nm. A LiB3O6 (LBO) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an absorbed pump power of 16.2 W, as high as 1.5 W of continuous wave output power at 660.5 nm is achieved with 10-mm-long LBO. The optical-to-optical conversion efficiency is up to 9.3%. Comparative results obtained for the pump with diode laser at 806 nm, into the highly-absorbing 4 F 5/2 level, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

3.
The quasi-three-level 908-nm continuous-wave laser emission under direct diode laser pumping at 880 nm into emitting level 4 F 3/2 of Nd:YLF have been demonstrated. An end-pumped Nd:YLF crystal yielded 4.7 W of output power for 11.8 W of absorbed pump power. The slope efficiency with respect to the absorbed pump power was 43.3%. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4 F 5/2 level, are given in order to prove the advantages of the 880-nm wavelength pumping.  相似文献   

4.
We present an efficiency Nd:LiYF4 (Nd:YLF) laser operating at 1313 nm pumped directly into the emitting level 4 F 3/2. At the incident pump power of 10.3 W, as high as 3.1 W of continuous-wave output power at 1313 nm is achieved. The slope efficiency with respect to the incident pump power was 36.1%. To the best of our knowledge, this is the first demonstration of such a laser system. Comparative results obtained for the pump with diode laser at 806 nm, into the highly absorbing 4 F 5/2 level, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

5.
We present a high-efficiency Nd: LiYF4 (Nd:YLF) laser operating at 1321 nm pumped directly into the emitting level, 4F3/2. The linear polarization of the pump diode laser was maintained by a short fiber. At the absorbed pump power of 7.3 W, as high as 3.6 W of continuous-wave output power at 1321 nm is achieved. The slope efficiency with respect to the absorbed pump power was 0.52. To the best of our knowledge, this is the first demonstration of such a laser system. Comparative results obtained for the pump with a diode laser at 806 nm, into the highly absorbing 4F5/2 level, are given in order to prove the advantages of 880 nm wavelength pumping.  相似文献   

6.
We report a continuous-wave (CW) yellow laser emission by sum-frequency mixing in two Nd:LuVO4 and Nd:YLF crystals. Using type-I critical phase-matching (CPM) LBO crystal, a yellow laser at 590 nm is obtained by 1066 and 1321 nm intracavity sum-frequency mixing. The maximum laser output power of 223 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 223 mW, the output stability is better than 4.5%.  相似文献   

7.
We report a high-efficiency Nd:YVO4 laser pumped by an all-solid-state Q-switched Ti:Sapphire laser at 880 nm in this paper. Output power at 1064 nm with different-doped Nd:YVO4 crystals of 0.4-, 1.0- and 3.0-at.% under the 880 nm pumping was measured, respectively. Comparative results obtained by the traditional pumping at 808 nm into the highly absorbing 4F5/2 level were presented, showing that the slope efficiency and the threshold with respect to the absorbed pump power of the 1.0-at.% Nd:YVO4 laser under the 880 nm pumping was 17.5% higher and 11.5% lower than those of 808 nm pumping. In a 4-mm-thick, 1.0-at.% Nd:YVO4 crystal, a high slope efficiency of 75% was achieved under the 880 nm pumping, with an optical-to-optical conversion efficiency of 52.4%.  相似文献   

8.
We report a continuous-wave (CW) blue laser emission by sum-frequency mixing in Nd:GdVO4 and Nd:YLF crystals. Using type-I critical phase-matching (CPM) LBO crystal, a blue laser at 490 nm is obtained by 1063 and 908 nm intracavity sum-frequency mixing. The maximum laser output power of 118 mW is obtained when an incident pump laser of 18.2 W is used. At the output power level of 118 mW, the output stability is better than 4.2%.  相似文献   

9.
This work reports a diode-side-pumped and passively Q-switched Nd:YLiF4 (YLF) laser operating at 1053 nm using a new laser resonator concept. Very stable pulses of 1 mJ energy with less than 10 ns pulse duration are obtained at 1 kHz repetition rate in a very simple, compact, and robust cavity that uses a double bounce configuration to achieve TEM00 operation.  相似文献   

10.
Highly efficient 1341 nm continuous-wave laser under 880 nm diode laser pumping in Nd:GdVO4 crystal is reported. Comparative results obtained by the traditional pumping at 808 nm were presented, showing that the slope efficiency and the threshold with respect to the absorbed pump power under 880 nm pumping was 34.9% higher and 12.6% lower than those of 808 nm pumping. A high slope efficiency of 49.1% was achieved under 880 nm pumping, with an optical-to-optical conversion efficiency of 41.7%.  相似文献   

11.
We report a green laser at 532 nm generation by intracavity frequency doubling of a continuous wave (CW) laser operation of a 1064 nm Nd:Y0.36Gd0.64VO4 laser under in-band diode pumping at 880 nm. An GdCa4O(BO3)3 (GdCOB) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 17.8 W, as high as 2.92 W of CW output power at 532 nm is achieved. The optical-to-optical conversion efficiency is up to 16.4%, and the fluctuation of the green output power was better than 2.5% in the given 30 min.  相似文献   

12.
LD端面泵浦Nd:YLF激光放大器研究   总被引:6,自引:3,他引:3       下载免费PDF全文
 描述了对高功率LD端面泵浦Nd:YLF激光放大器的研究。放大器的耦合结构采用微透镜对泵浦光进行准直,透镜导管(Lensduct)对其汇聚,耦合效率达72.2%。用该放大器构成的振荡器的斜效率为35.9%。该激光放大器的口径为Φ 10mm,在1053nm处具有2.66的小信号增益。  相似文献   

13.
We present a laser architecture to obtain continuous-wave blue radiation at 488 nm. A 808 nm diode-pumped the Nd:YVO4 crystal emitting at 914 nm. A part of the pump power was then absorbed by the Nd:YVO4 crystal. The remaining was used to pump the Nd:YLiF4 (Nd:YLF) crystal emitting at 1047 nm. Intracavity sum-frequency mixing at 914 and 1047 nm was then realized in a BiB3O6 (BiBO) crystal to reach the blue radiation. We obtained a continuous-wave output power of 339 mW at 488 nm with a pump laser diode emitting 18.3 W at 808 nm.  相似文献   

14.
We report a green laser at 541.5 nm generation by intracavity frequency doubling of a continuous wave (cw) laser operation of a 1083 nm Nd:GdVO4 laser under 880 nm diode pumping into the emitting level 4 F 3/2. A LiB3O5 (LBO) crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an incident pump power of 17.8 W, as high as 2.52 W of cw output power at 541.5 nm is achieved. The optical-to-optical conversion efficiency is up to 14.2%, and the fluctuation of the green output power was better than 3.6% in the given 30 min.  相似文献   

15.
We report for the first time a efficient compact red laser at 671.5 nm generation by intracavity frequency doubling of a continuous wave laser operation of a diode direct pumped Nd:LuVO4 laser on the 4 F 3/24 I 13/2 transition at 1343 nm. An LBO crystal, cut for critical type I phase matching at room temperature is used for second harmonic generation of the laser. At an absorbed pump power of 16.2 W, as high as 4.3 W of continuous wave output power at 671.5 nm is achieved with 10-mm-long LBO. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4 F 5/2 level, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

16.
43.6 W near-diffraction-limited continuous-wave laser beam at 1342 nm in 880 nm laser-diode partially end-pumped Nd:YVO4 slab laser is presented. The slope efficiency and optical-to-optical efficiency with respect to absorbed pumping power were 45.4% and 35.9%, respectively. At output power of 34.5 W, the M 2 factors in unstable and stable directions were 1.3 and 1.2, respectively.  相似文献   

17.
We report a laser architecture to obtain continuous-wave blue radiation at 488 nm. A 808 nm diodepumped the Nd:YVO4 crystal emitting at 914 nm. A part of the pump power was then absorbed by the Nd:YVO4 crystal. The remaining was used to pump the Nd:YLF crystal emitting at 1047 nm. Intracavity sum-frequency mixing at 914 and 1047 nm was then realized in a LBO crystal to reach the blue radiation. We obtained a continuous-wave output power of 514 mW at 488 nm with a pump laser diode emitting 19.6 W at 808 nm.  相似文献   

18.
The continuous-wave high-efficiency laser emission of Nd:GdVO4 at the second-harmonic of 456 nm obtained by intracavity frequency doubling with an BiB3O6(BiBO) nonlinear crystal is investigated under pumping by diode laser at 880 nm into emitting level 4F3/2. About 3.8 W at 456 nm with M2 = 1.4 was obtained from a 5 mm-thick 0.4 at.% Nd:GdVO4 laser medium and a 12 mm-long BiBO nonlinear crystal in a Z-type cavity for 13.9 W absorbed pump power. An optical-to-optical efficiency with respect to the absorbed pump power was 0.274. Comparative results obtained for the pump with diode laser at 808 nm, into the highly-absorbing 4F5/2 level, are given in order to prove the advantages of the 880 nm wavelength pumping.  相似文献   

19.
An efficient and compact green laser at 526 nm generated by intracavity frequency doubling of a continuous wave (CW) laser operation of a diode pumped Nd:YLF laser at 1053 nm under the condition of suppression the high gain transition at 1047 nm. With 19.5 W diode pump power and a frequency doubling crystal LBO, as high as 2.15 W of CW output power at 526 nm is achieved, corresponding to an optical-to-optical conversion efficiency of 11.2% and the output power stability in 8 h is better than 2.87%. To the best of our knowledge, this it the highest watt-level laser at 526 nm generated by intracavity frequency doubling of a diode pumped Nd:YLF laser at 1053 nm.  相似文献   

20.
We demonstrate a 1064nm Nd:YAG laser by directly pumping into the upper lasing level with a tunable Ti:sapphire laser. The valid wavelength is demonstrated at 868.3nm, 875.2nm, 883.8nm, and 885.5nm, respectively. To our knowledge, this is the first time that 1064nm Nd:YAG laser pumped by 875.2nm laser. In addition, laser wavelength at 946 nm is also generated by direct pumping together with traditional pumping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号