首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study closed-form solutions to the forward kinematic problems are obtained for a particular type of six degree-of-freedom parallel manipulator called 6-3 Linapod. The 6-3 Linapod parallel manipulators have a 6-3 PSS (or PUS) structure, and forward kinematic solutions are obtained by using the solution procedure for 6-3 SPS (or UPS) manipulators. In this procedure, a 6-3 Linapod is first transformed into its equivalent mechanism, namely an inclined 3RS manipulator, and then the condition that the three spherical joints on the moving platform form an equilateral triangle leads us to obtain three polynomial equations in three unknowns. These equations are solved by using Sylvester dialytic elimination method. Each set of real roots corresponds to a particular configuration of the manipulator. Solutions so obtained are verified by performing inverse position analysis. A method to identify configurations containing crossed links is presented in this study, which is based on the interpretation of link crossing as intersection of a link with a triangle, whose vertices are positions of joints on the corresponding links.  相似文献   

2.
In this paper, a new method for the dynamic analysis of a closed-loop flexible kinematic mechanical system is presented. The kinematic and force models are developed using absolute reference, joint relative, and elastic coordinates as well as joint reaction forces. This recursive formulation leads to a system of loosely coupled equations of motion. In a closed-loop kinematic chain, cuts are made at selected auxiliary joints in order to form spanning tree structures. Compatibility conditions and reaction force relationships at the auxiliary joints are adjoined to the equations of open-loop mechanical systems in order to form closed-loop dynamic equations. Using the sparse matrix structure of these equations and the fact that the joint reaction forces associated with elastic degrees of freedom do not represent independent variables, a method for decoupling the joint and elastic accelerations is developed. Unlike existing recursive formulations, this method does not require inverse or factorization of large non-linear matrices. It leads to small systems of equations whose dimensions are independent of the number of elastic degrees of freedom. The application of dynamic decoupling method in dynamic analysis of closed-loop deformable multibody systems is also discussed in this paper. The use of the numerical algorithm developed in this investigation is illustrated by a closed-loop flexible four-bar mechanism.  相似文献   

3.
柔性机械臂动力学方程单向递推组集方法   总被引:5,自引:1,他引:5  
本文基于Jourdain变分原理提出一种柔性机械臂动力学方程的单向递推组集方法。用规则标号法描述系统中物体和铰的邻接关系;用铰相对坐标和模态坐标分别描述物体的大位移运动和弹性变形。文末以三连杆机器人操作手为例说明本文建模的过程。  相似文献   

4.
Recursive matrix relations for kinematics and dynamics analysis of a three-prismatic-revolute-cylindrical (3-PRC) parallel kinematic machine (PKM) are performed in this paper. Knowing the translational motion of the platform, we develop first the inverse kinematical problem and determine the positions, velocities and accelerations of the robot’s elements. Further, the inverse dynamic problem is solved using an approach based on the principle of virtual work and the results in the framework of the Lagrange equations with their multipliers can be verified. Finally, compact matrix equations and graphs of simulation for input force and power of each of three actuators are obtained. The investigation of the dynamics of this parallel mechanism is made mainly to solve successfully the control of the motion of such robotic system.  相似文献   

5.
In this paper, a new approach for dynamic analysis of the flexible multibody manipulator systems is described. The organization of the computer implementations which are used to automatically construct and numerically solve the system of loosely coupled dynamic equations expressed in terms of the absolute, joint and elastic coordinates is discussed. The main processor source code consists of three main modules: constraint module, mass module and force module. The constraint module is used to numerically evaluate the relationship between the absolute and joint accelerations. The mass module is used to numerically evaluate the system mass matrix as well as the non-linear Coriolis and centrifugal forces associated with the absolute, joint and elastic coordinates. At the same time, the force module is used to numerically evaluate the generalized external and elastic forces associated with the absolute, joint and elastic coordinates. Computational efficiency is achieved by taking advantage of the structure of the resulting system of loosely coupled equations. The absolute, joint and elastic accelerations are integrated forward in time using direct numerical integration methods. The absolute positions and velocities can then be determined using the kinematic relationships. The flexible 2-DOF double-pendulum and spatial manipulator systems are used as illustrated examples to demonstrate and verify the application of the computational procedures discussed in this paper.  相似文献   

6.
本文探究了铰柔性对机器人动力学响应和动力学控制的影响. 首先, 建立由$n$个柔性铰和$n$个柔性杆组成的空间机器人模型, 运用递推拉格朗日动力学方法, 得到柔性机器人系统的刚柔耦合动力学方程. 在动力学建模过程中, 除了考虑杆件的拉伸变形、弯曲变形、扭转变形以及非线性耦合变形对机器人系统动力学行为的影响, 还考虑了铰的柔性对机器人动力学响应和控制的影响. 其中, 柔性铰模型是基于Spong的柔性关节简化模型, 将柔性铰看成线性扭转弹簧, 不仅考虑了铰阻尼的存在, 还考虑了柔性铰的质量效应. 其次, 编写了空间柔性铰柔性杆机器人仿真程序, 研究铰的刚度系数和阻尼系数对系统动力学响应的影响. 研究表明: 随着柔性铰刚度系数的增大, 柔性机器人的动态响应幅值减小, 振动频率变大. 随着柔性铰阻尼系数的增大, 柔性机器人的动态响应幅值减小, 振动幅值的衰减速度变快. 可通过调节柔性铰的刚度和阻尼来减小柔性铰柔性杆机器人的振动, 因此铰阻尼的研究具有重要工程意义. 最后, 研究了铰柔性在机器人系统动力学控制中的影响. 在刚性铰机械臂和柔性铰机械臂完成相同圆周运动时, 通过逆动力学方法求解得到两种情况下的关节驱动力矩. 研究表明: 引入柔性铰会使控制所需的驱动力矩变小, 对机器人控制的影响显著.  相似文献   

7.
方五益  郭晛  黎亮  章定国 《力学学报》2020,52(4):965-974
本文探究了铰柔性对机器人动力学响应和动力学控制的影响. 首先, 建立由$n$个柔性铰和$n$个柔性杆组成的空间机器人模型, 运用递推拉格朗日动力学方法, 得到柔性机器人系统的刚柔耦合动力学方程. 在动力学建模过程中, 除了考虑杆件的拉伸变形、弯曲变形、扭转变形以及非线性耦合变形对机器人系统动力学行为的影响, 还考虑了铰的柔性对机器人动力学响应和控制的影响. 其中, 柔性铰模型是基于Spong的柔性关节简化模型, 将柔性铰看成线性扭转弹簧, 不仅考虑了铰阻尼的存在, 还考虑了柔性铰的质量效应. 其次, 编写了空间柔性铰柔性杆机器人仿真程序, 研究铰的刚度系数和阻尼系数对系统动力学响应的影响. 研究表明: 随着柔性铰刚度系数的增大, 柔性机器人的动态响应幅值减小, 振动频率变大. 随着柔性铰阻尼系数的增大, 柔性机器人的动态响应幅值减小, 振动幅值的衰减速度变快. 可通过调节柔性铰的刚度和阻尼来减小柔性铰柔性杆机器人的振动, 因此铰阻尼的研究具有重要工程意义. 最后, 研究了铰柔性在机器人系统动力学控制中的影响. 在刚性铰机械臂和柔性铰机械臂完成相同圆周运动时, 通过逆动力学方法求解得到两种情况下的关节驱动力矩. 研究表明: 引入柔性铰会使控制所需的驱动力矩变小, 对机器人控制的影响显著.   相似文献   

8.
The dynamics of classical robotic systems are usually described by ordinary differential equations via selecting a minimum set of independent generalized coordinates. However, different parameterizations and the use of a nonminimum set of (dependent) generalized coordinates can be advantageous in such cases when the modeled device contains closed kinematic loops and/or it has a complex structure. On one hand, the use of dependent coordinates, like natural coordinates, leads to a different mathematical representation where the equations of motion are given in the form of differential algebraic equations. On the other hand, the control design of underactuated robots usually relies on partial feedback linearization based techniques which are exclusively developed for systems modeled by independent coordinates. In this paper, we propose a different control algorithm formulated by using dependent coordinates. The applied computed torque controller is realized via introducing actuator constraints that complement the kinematic constraints which are used to describe the dynamics of the investigated service robotic system in relatively simple and compact form. The proposed controller is applied to the computed torque control of the planar model of the ACROBOTER service robot. The stability analysis of the digitally controlled underactuated service robot is provided as a real parameter case study for selecting the optimal control gains.  相似文献   

9.
Disturbance compensation is one of the major issues for underwater robots to hover as a mobile platform and to manipulate an object in an underwater environment. This paper presents a new strategy of disturbance compensation for a mobile dual-arm underwater robot using internal torques derived from redundant parallel mechanism theory. A model of the robot was analyzed by redundant serial and parallel mechanisms at the same time. The joint torque to operate the robot is obtained from a redundant serial mechanism model with null-space projection due to redundancy. The joint torque derived from the redundant parallel kinematic model is calculated to perfectly compensate for disturbances to the mobile platform and is included in the solution of the joint torque based on the serial redundant model. The resultant joint torque can generate force on the end-effector for required tasks and forces for disturbance compensation simultaneously . A simulation shows the performance of this disturbance compensation strategy. The joint torque based on the algorithm generates the desired task force and the disturbance compensation force together, and a little additional joint torque can generate a large internal force effectively due to the characteristics of a redundant parallel mechanism. The proposed method is more effective than compensation methods using thrusting force on the mobile platform.  相似文献   

10.
In this paper the dynamic analysis of the double wishbone motor-vehicle suspension system using the point-joint coordinates formulation is presented. The mechanical system is replaced by an equivalent constrained system of particles and then the laws of particle dynamics are used to derive the equations of motion. Due to the presence of large number of geometric and kinematic constraints the velocity transformation approach is used to eliminate some constraints. The equations of motion in terms of the Cartesian coordinates of the particles are transformed to a reduced set in terms of relative joint variables by defining differential-algebraic equations in terms of the joint variables are equal to the number of degrees of freedom of the whole system plus the number of cut-joint constraints corresponding to cut of kinematical closed loops. Use of both the Cartesian and relative joint variables produces an efficient set of equations without loss of generality. The chosen suspension includes open and closed loops with quarter-car model.  相似文献   

11.
A wide variety of mechanical and structural multibody systems consist ofvery flexible components subject to kinematic constraints. The widelyused floating frame of reference formulation that employs linear modelsto describe the local deformation leads to a highly nonlinear expressionfor the inertia forces and can be applied to only small deformationproblems. This paper is concerned with the formulation and computerimplementation of spatial joint constraints and forces using the largedeformation absolute nodal coordinate formulation. Unlike the floatingframe of reference formulation that employs a mixed set of absolutereference and local elastic coordinates, in the absolute nodalcoordinate formulation, global displacement and slope coordinates areused. The nonlinear kinematic constraint equations and generalized forceexpressions are expressed in terms of the absolute global displacementsand slopes. In particular, a new formulation for the sliding jointbetween two very flexible bodies is developed. A surface parameter isintroduced as an additional new variable in order to facilitate theformulation of this sliding joint. The constraint and force expressionsdeveloped in this paper are also expressed in terms of generalizedCholesky coordinates that lead to an identity inertia matrix. Severalexamples are presented in order to demonstrate the use of theformulations developed in the paper.  相似文献   

12.
In this paper, a method for the dynamic analysis of geometrically nonlinear elastic robot manipulators is presented. Robot arm elasticity is introduced using a finite element method which allows for the gross arm rotations. A shape function which accounts for the combined effects of rotary inertia and shear deformation is employed to describe the arm deformation relative to a selected component reference. Geometric elastic nonlinearities are introduced into the formulation by retaining the quadratic terms in the strain-displacement relationships. This has lead to a new stiffness matrix that depends on the rotary inertia and shear deformation and which has to be iteratively updated during the dynamic simulation. Mechanical joints are introduced into the formulation using a set of nonlinear algebraic constraint equations. A set of independent coordinates is identified over each subinterval and is employed to define the system state equations. In order to exemplify the analysis, a two-armed robot manipulator is solved. In this example, the effect of introducing geometric elastic nonlinearities and inertia nonlinearities on the robot arm kinematics, deformations, joint reaction forces and end-effector trajectory are investigated.  相似文献   

13.
Pietro Fanghella 《Meccanica》1995,30(6):685-705
This paper presents a systematic approach, based on displacement group properties, to the kinematic analysis of spatial linkages with one closed loop and to the solution of the inverse kinematic problem for robot manipulators. By using the proposed approach, a set of kinematic chains can be determined such that a first closure equation with one unknown can be derived directly and explicitly. Then the remaining closure equations are obtained: it is proved that they can be expressed in triangular form. The basic algorithms used to solve these equations in closed form are also presented. For each algorithm, the conditions of applicability, the initial information required, the results, the type and form of equations, and the maximum number of solutions are given. The proposed approach is well suited to the symbolic explicit solution of the inverse kinematic problem of a wide range of robut mechanisms. An example of its application is given.
Sommario Il lavoro presenta un appreceio sistematico, basato sulle proprietà dei gruppi di spostamento, all'analisi cinematica di posizione di meccanismi spaziali ad una maglia e alla cinematica inversa di robot manipolatori seriali. L'approccio consente di determinare un insieme di catene cinematiche per le quali può essere scritta e risolta direttamente una prima equazione di chiusura in una sola incognita. Viene successivamente dimostrato esaustivamente che, per tali catene, le successive equazioni di chiusura possono essere espresse e risolte in forma triangolare. Inoltre sono presentati gli algoritmi di base utilizzabili per la soluzione del problema posto. Per ciascuno di essi sono dati: le condizioni di applicabilità, l'informazione iniziale richiesta, i risultati ottenuti, il tipo e la forma delle equazioni e il massimo numero di soluzioni possibili. L'approccio presentato è utilizzabile per la soluzione simbolica esplicita, manuale o automatica, di un esteso insieme di meccanismi per robot. Viene dato un esempio di uso del metodo.
  相似文献   

14.
The Arbitrary Lagrangian Eulerian (ALE) framework coupled with some boundary tracking techniques is proven to be an effective method for simulation of free‐surface flows. In this paper, a special ALE framework is derived with clarification of three velocities, the notion of mesh‐frozen and field‐frozen, and the notion of tentatively inertial coordinates. A weighted integral ALE governing equations are formulated on generic coordinates and discretized with a finite element method and linear implicit time scheme. The system is solved with a discrete operator splitting technique and superposition‐based logistic parallelization. The formulation and implementation are verified through several fixed‐geometry problems and a reasonably good parallel performance is observed. Capillary jet flow is the main problem of the paper and the numerical techniques for boundary tracking are elaborated, which include an indirect boundary tracking of flux method and an iterative direct boundary tracking method. Also, a high‐order compact scheme for dynamic boundary condition and a squeeze technique for kinematic boundary condition are adopted. The axisymmetric jet breakup is studied in detail and numerical results match with the published data very well. Numerical accuracy and sensitivity are studied, including effects of element type, time scheme, compact scheme, and boundary tracking techniques. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
In combination of the advantages of both parallel mechanisms and compliant mechanisms, a compliant parallel mechanism with two rotational degrees of freedom is designed to meet the requirement of a lightweight and compact pan-tilt platform. Firstly, two commonly-used design methods i.e. direct substitution and Freedom and Constraint Topology are applied to design the configuration of the pan-tilt system, and similarities and differences of the two design alternatives are compared. Then inverse kinematic analysis of the candidate mechanism is implemented by using the pseudo-rigid-body model, and the Jacobian related to its differential kinematics is further derived to help designer realize dynamic analysis of the 8R compliant mechanism. In addition, the mechanism’s maximum stress existing within its workspace is tested by finite element analysis. Finally, a method to determine joint damping of the flexure hinge is presented, which aims at exploring the effect of joint damping on actuator selection and real-time control. To the authors’ knowledge, almost no existing literature concerns with this issue.  相似文献   

16.
I. INTRODUCTION It is well known there are close relationships between the symmetries and conservation laws inmechanical systems. The symmetric principles are among the key issues in mechanics. Two e?ectivemethods of studying the symmetries and conservation laws of mechanical are Noether’s method[1] andLie’s method. The approach to Lie symmetries was reported in the 19th century, but no applicationin mechanics appeared until 1979[2]. In recent years, studies of Lie’s method have be…  相似文献   

17.
18.
In computational multibody algorithms, the kinematic constraintequations that describe mechanical joints and specified motiontrajectories must be satisfied at the position, velocity andacceleration levels. For most commonly used constraint equations, onlyfirst and second partial derivatives of position vectors with respect tothe generalized coordinates are required in order to define theconstraint Jacobian matrix and the first and second derivatives of theconstraints with respect to time. When the kinematic and dynamicequations of the multibody systems are formulated in terms of a mixedset of generalized and non-generalized coordinates, higher partialderivatives with respect to these non-generalized coordinates arerequired, and the neglect of these derivatives can lead to significanterrors. In this paper, the implementation of a contact model in generalmultibody algorithms is presented as an example of mechanical systemswith non-generalized coordinates. The kinematic equations that describethe contact between two surfaces of two bodies in the multibody systemare formulated in terms of the system generalized coordinates and thesurface parameters. Each contact surface is defined using twoindependent parameters that completely define the tangent and normalvectors at an arbitrary point on the body surface. In the contact modeldeveloped in this study, the points of contact are searched for on lineduring the dynamic simulation by solving the nonlinear differential andalgebraic equations of the constrained multibody system. It isdemonstrated in this paper that in the case of a point contact andregular surfaces, there is only one independent generalized contactconstraint force despite the fact that five constraint equations areused to enforce the contact conditions.  相似文献   

19.
Sufficient conditions are given on the coordinate systems which enable reduced equilibrium equations to be derived for perfectly elastic materials involving deformations which depend in an essential way only on two of the three coordinates. Reduced equilibrium equations given previously for plane and axially symmetric deformations are special cases of the equations given here. These equations considerably reduce the calculations involved in investigating possible solutions of finite elasticity, either exact semi-inverse solutions or approximate perturbation solutions. Moreover a formula for the pressure function appearing in the reduced equilibrium equations is given which relates to the corresponding pressure function associated with the inverse deformation. This formula is similar to one given previously for fully three dimensional deformations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号