首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Equations are derived for the gasdynamics of a dense plasma confined by a multiple-mirror magnetic field. The limiting cases of large and small mean free paths have been analyzed earlier: 0 and k, where is the length of an individual mirror machine, 0 is the size of the mirror, and k is the mirror ratio. The present work is devoted to a study of the intermediate range of mean free paths 0 k. It is shown that in this region of the parameters the process of expansion of the plasma has a diffusional nature, and the coefficients of transfer of the plasma along the magnetic field are calculated.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 14–19, November–December, 1974.The authors thank D. D. Ryutov for the statement of the problem and interest in the work.  相似文献   

2.
Numerical calculations have been made [1–4] of the pressure distribution over the surface of a sphere or cylinder during transverse flow in the range 0 /2, where is the angle reckoned from the stagnation point along the meridional plane, and on the basis of these results simple analytical equations have been proposed in order to determine the pressure for arbitrary Mach numbers M in the free stream. The gas is assumed to be ideal and perfect.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 185–188, March–April, 1985.  相似文献   

3.
The rapidly forced pendulum equation with forcing sin((t/), where =<0p,p = 5, for 0, sufficiently small, is considered. We prove that stable and unstable manifolds split and that the splitting distanced(t) in the ( ,t) plane satisfiesd(t) = sin(t/) sech(/2) +O( 0 exp(–/2)) (2.3a) and the angle of transversal intersection,, in thet = 0 section satisfies 2 tan/2 = 2S s = (/2) sech(/2) +O(( 0 /) exp(–/2)) (2.3b) It follows that the Melnikov term correctly predicts the exponentially small splitting and angle of transversality. Our method improves a previous result of Holmes, Marsden, and Scheuerle. Our proof is elementary and self-contained, includes a stable manifold theorem, and emphasizes the phase space geometry.  相似文献   

4.
The molecular theory of Doi has been used as a framework to characterize the rheological behavior of polymeric liquid crystals at the low deformation rates for which it was derived, and an appropriate extension for high deformation rates is presented. The essential physics behind the Doi formulation has, however, been retained in its entirety. The resulting four-parameter equation enables prediction of the shearing behavior at low and high deformation rates, of the stress in extensional flows, of the isotropic-anisotropic phase transition and of the molecular orientation. Extensional data over nearly three decades of elongation rate (10–2–101) and shearing data over six decades of shear rate (10–2–104) have been correlated using this analysis. Experimental data are presented for both homogeneous and inhomogeneous shearing stress fields. For the latter, a 20-fold range of capillary tube diameters has been employed and no effects of system geometry or the inhomogeneity of the flow-field are observed. Such an independence of the rheological properties from these effects does not occur for low molecular weight liquid crystals and this is, perhaps, the first time this has been reported for polymeric lyotropic liquid crystals; the physical basis for this major difference is discussed briefly. A Semi-empirical constant in eq. (18), N/m2 - c rod concentration, rods/m3 - c * critical rod concentration at which the isotropic phase becomes unstable, rods/m3 - C interaction potential in the Doi theory defined in eq. (3) - d rod diameter, m - D semi-empirical constant in eq. (19), s–1 - D r lumped rotational diffusivity defined in eq. (4), s–1 - rotational diffusivity of rods in a concentrated (liquid crystalline) system, s–1 - D ro rotational diffusivity of a dilute solution of rods, s–1 - f distribution function defining rod orientation - F tensorial term in the Doi theory defined in eq. (7) (or eq. (19)), s–1 - G tensorial term in the Doi theory defined in eq. (8) - K B Boltzmann constant, 1.38 × 10–23 J/K-molecule - L rod length, m - S scalar order parameter - S tensor order parameter defined in eq. (5) - t time, s - T absolute temperature, K - u unit vector describing the orientation of an individual rod - rate of change ofu due to macroscopic flow, s–1 - v fluid velocity vector, m/s - v velocity gradient tensor defined in eq. (9), s–1 - V mean field (aligning) potential defined in eq. (2) - x coordinate direction, m - Kronecker delta (= 0 if = 1 if = ) - r ratio of viscosity of suspension to that of the solvent at the same shear stress - s solvent viscosity, Pa · s - * viscosity at the critical concentrationc *, Pa · s - v 1, v2 numerical factors in eqs. (3) and (4), respectively - deviatoric stress tensor, N/m2 - volume fraction of rods - 0 constant in eq. (16) - * volume fraction of rods at the critical concentrationc * - average over the distribution functionf(u, t) (= d 2u f(u, t)) - gradient operator - d 2u integral over the surface of the sphere (|u| = 1)  相似文献   

5.
This article discusses plane and axisymmetric flows of a nonviscous ideal gas around bodies of stepped form, forming with a Mach number M= and an adiabatic indexN1. The greatest amount of attention is paid to the case where there is no Newtonian free layer, but the shock layer is detached at great distances from the nose of the body.Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 4, pp. 104–112, July–August, 1973.  相似文献   

6.
By utilizing available experimental data for net energy transfer spectra for homogeneous turbulence, contributions P(, ) to the energy transfer at a wavenumber from various other wavenumbers are calculated. This is done by fitting a truncated power-exponential series in and to the experimental data for the net energy transfer T(), and using known properties of P(, ). Although the contributions P(, ) obtained by using this procedure are not unique, the results obtained by using various assumptions do not differ significantly. It seems clear from the results that for a region where the energy entering a wavenumber band dominates that leaving, much of the energy entering the band comes from wavenumbers which are about an order of magnitude smaller. That is, the energy transfer is rather nonlocal. This result is not significantly dependent on Reynolds number (for turbulence Reynolds numbers based on microscale from 3 to 800). For lower wavenumbers, where more energy leaves than enters a wavenumber band, the energy transfer into the band is more local, but much of the energy then leaves at distant wavenumbers.  相似文献   

7.
A study is made of the problem of hypersonic flow of an inviscid perfect gas over a convex body with continuously varying curvature. The solution is sought in the framework of the asymptotic theory of a strongly compressed gas [1–4] in the limit M when the specific heat ratio tends to 1. Under these assumptions, the disturbed flow is situated in a thin shock layer between the body and the shock wave. At the point where the pressure found by the Newton-Buseman formula vanishes there is separation of the flow and formation of a free layer next to the shock wave [1–4]. The singularity of the asymptotic expansions with respect to the parameter 1 = ( –1)/( + 1) associated with separation of the strongly compressed layer has been investigated previously by various methods [3–9]. Local solutions to the problem valid in the neighborhood of the singularity have been obtained for some simple bodies [3–7]. Other solutions [7, 9] eliminate the singularity but do not give the transition solution entirely. In the present paper, an asymptotic solution describing the transition from the attached to the free layer is constructed for a fairly large class of flows.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 99–105, January–February, 1982.  相似文献   

8.
When blunt bodies are in hypersonic flight, a high-entropy layer of gas with nonzero vorticity is formed near their surface. The transverse gradients of the entropy, density, and gas velocity in the layer are high, which makes it necessary to take into account its absorption by the boundary layer of finite thickness . This vortex interaction is usually accompanied by an increase in the heat flux q and the frictional stress on the wall compared with their values as calculated in accordance with the classical scheme of a thin boundary layer, when the parameters on the outer edge of the boundary layer are set equal to the inviscid parameters on the body. This effect has been investigated on the side surface of slender (with angle 1 to the undisturbed flow) blunt bodies in a hypersonic stream [1–3]. It is shown in the present paper that the effect can have a stronger and even qualitative influence on the flow over blunt bodies with 1 if the radius of curvature Rs of the detached shock wave on the axis is small compared with the midsection radius R of the body. It is shown that the distributions of the heat fluxes with allowance for the vorticity of the inviscid shock layer are similar in the case of slightly blunt (r0/R 0) cones with half-angles less than a critical *.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 50–57, March–April, 1981.  相似文献   

9.
This paper discusses the asymptotic behavior as 0+ of the chemical potentials associated with solutions of variational problems within the Van der Waals-Cahn-Hilliard theory of phase transitions in a fluid with free energy, per unit volume, given by 2¦¦2+ W(), where is the density. The main result is that is asymptotically equal to E/d+o(), with E the interfacial energy, per unit surface area, of the interface between phases, the (constant) sum of principal curvatures of the interface, and d the density jump across the interface. This result is in agreement with a formula conjectured by M. Gurtin and corresponds to the Gibbs-Thompson relation for surface tension, proved by G. Caginalp within the context of the phase field model of free boundaries arising from phase transitions.  相似文献   

10.
A new slit-die rheometer (the Stressmeter) for on-line and sample measurement of the viscosity, , and the first normal stress difference, N 1, in steady shear flow for molten polymers and other high-viscosity liquids is described. Two liquid-filled transverse slots, located in one die wall near the center station, give pressures P 2 and P 3 from whose difference the wall shear stress is calculated. In the other die wall at a location opposite the center of the P 2 slot is a flush-mounted transducer, giving a pressure P 1. N 1 is calculated from the hole pressure P * = P 1P 2. A metering pump, used to measure the flow rate Q, is supplied with melt either from an extruder (online mode) or from a pressurized sample cylinder (sample mode). The wall shear rate is calculated from Q and ; the Weissenberg-Rabinowitsch correction and a new small-viscous-heating-correction algorithm (affecting ) are used. Viscous heating corrections are small; entrance and exit errors are negligible. The instrument is tested by comparing its results with those obtained from cone-plate and capillary rheometers. Measurement ranges extend to = 200 kPa, = 3000 s–1, and temperature = 250°C.Dedicated to Prof. Dr. J. Meissner on the occasion of his retirement from the chair of Polymer Physics at the Eidgenössische Technische Hochschule (ETH) Zürich, Switzerland  相似文献   

11.
The influence of maneuvering on the chaotic response of a fluttering buckled plate on an aircraft has been studied. The governing equations, derived using Lagrangian mechanics, include geometric non-linearities associated with the occurrence of tensile stresses, as well as coupling between the angular velocity of the maneuver and the elastic degrees of freedom. Numerical simulation for periodic and chaotic responses are conducted in order to analyze the influence of the pull-up maneuver on the dynamic behavior of the panel. Long-time histories phase-plane plots, and power spectra of the responses are presented. As the maneuver (load factor) increases, the system exhibits complicated dynamic behavior including a direct and inverse cascade of subharmonic bifurcations, intermittency, and chaos. Beside these classical routes of transition from a periodic state to chaos, our calculations suggest amplitude modulation as a possible new mode of transition to chaos. Consequently this research contributes to the understanding of the mechanisms through which the transition between periodic and strange attractors occurs in, dissipative mechanical systems. In the case of a prescribed time dependent maneuver, a remarkable transition between the different types of limit cycles is presented.Nomenclature a plate length - a r u r /h - D plate bending stiffness - E modulus of elasticity - g acceleration due to gravity - h plate thickness - j1,j2,j3 base vectors of the body frame of reference - K spring constant - M Mach number - n 1 + 0/g - N 1 applied in-plane force - pp aerodynamic pressure - P pa 4/Dh - q 0/2 - Q r generalized Lagrangian forces - R rotation matrix - R 4 N, a 2/D - t time - kinetic energy - u plate deflection - u displacement of the structure - u r modal amplitude - v0 velocity - x coordinates in the inertial frame of reference - z coordinates in the body frame of reference - Ka/(Ka+Eh) - - elastic energy - 2qa 3/D - a/mh - Poisson's ratio - material coordinates - air density - m plate density - - r prescribed functions - r sin(r z/a) - angular velocity - a/v0 - skew-symmetric matrix form of the angular velocity  相似文献   

12.
The vortex breakdown phenomenon in a closed cylindrical container with a rotating endwall disk was reproduced. Visualizations were performed to capture the prominent flow characteristics. The locations of the stagnation points of breakdown bubbles and the attendant global flow features were in excellent agreement with the preceding observations. Experiments were also carried out in a differentially-rotating cylindrical container in which the top endwall rotates at a relatively high angular velocity t, and the bottom endwall and the sidewall rotate at a low angular velocity sb. For a fixed cylinder aspect ratio, and for a given relative rotational Reynolds number based on the angular velocity difference tsb, the flow behavior is examined as |sb/t| increases. For a co-rotation (sb/t>0), the breakdown bubble is located closer to the bottom endwall disk. However, for a counter-rotation (sb/t<0), the bubble is seen closer to the top endwall disk. For sufficiently large values of sb, the bubble ceases to exist for both cases.  相似文献   

13.
LDA measurements of the mean velocity in a low Reynolds number turbulent boundary layer allow a direct estimate of the friction velocity U from the value of /y at the wall. The trend of the Reynolds number dependence of / is similar to the direct numerical simulations of Spalart (1988).  相似文献   

14.
Stokes flow in a deformable medium is considered in terms of an isotropic, linearly elastic solid matrix. The analysis is restricted to steady forms of the momentum equations and small deformation of the solid phase. Darcy's law can be used to determine the motion of the fluid phase; however, the determination of the Darcy's law permeability tensor represents part of the closure problem in which the position of the fluid-solid interface must be determined.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - E Young's modulus for the-phase, N/m2 - e i unit base vectors (i = 1, 2, 3) - g gravity vector, m2/s - H height of elastic, porous bed, m - k unit base vector (=e 3) - characteristic length scale for the-phase, m - L characteristic length scale for volume-averaged quantities, m - n unit normal vector pointing from the-phase toward the-phase (n = -n ) - p pressure in the-phase, N/m2 - P p g·r, N/m2 - r 0 radius of the averaging volume, m - r position vector, m - t time, s - T total stress tensor in the-phase, N/m2 - T 0 hydrostatic stress tensor for the-phase, N/m2 - u displacement vector for the-phase, m - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 - v velocity vector for the-phase, m/s Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - shear coefficient of viscosity for the-phase, Nt/m2 - first Lamé coefficient for the-phase, N/m2 - second Lamé coefficient for the-phase, N/m2 - bulk coefficient of viscosity for the-phase, Nt/m2 - T T 0 , a deviatoric stress tensor for the-phase, N/m2  相似文献   

15.
Stokes flow through a rigid porous medium is analyzed in terms of the method of volume averaging. The traditional averaging procedure leads to an equation of motion and a continuity equation expressed in terms of the volume-averaged pressure and velocity. The equation of motion contains integrals involving spatial deviations of the pressure and velocity, the Brinkman correction, and other lower-order terms. The analysis clearly indicates why the Brinkman correction should not be used to accommodate ano slip condition at an interface between a porous medium and a bounding solid surface.The presence of spatial deviations of the pressure and velocity in the volume-averaged equations of motion gives rise to aclosure problem, and representations for the spatial deviations are derived that lead to Darcy's law. The theoretical development is not restricted to either homogeneous or spatially periodic porous media; however, the problem ofabrupt changes in the structure of a porous medium is not considered.Roman Letters A interfacial area of the - interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the - interface contained within the averaging volume, m2 - A * interfacial area of the - interface contained within a unit cell, m2 - Ae area of entrances and exits for the -phase contained within a unit cell, m2 - B second order tensor used to represent the velocity deviation (see Equation (3.30)) - b vector used to represent the pressure deviation (see Equation (3.31)), m–1 - d distance between two points at which the pressure is measured, m - g gravity vector, m/s2 - K Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the -phase (see Figure 2), m - characteristic length scale for the -phase (see Figure 2), m - n unit normal vector pointing from the -phase toward the -phase (n =–n ) - n e unit normal vector for the entrances and exits of the -phase contained within a unit cell - p pressure in the -phase, N/m2 - p intrinsic phase average pressure for the -phase, N/m2 - p p , spatial deviation of the pressure in the -phase, N/m2 - r 0 radius of the averaging volume and radius of a capillary tube, m - v velocity vector for the -phase, m/s - v phase average velocity vector for the -phase, m/s - v intrinsic phase average velocity vector for the -phase, m/s - v v , spatial deviation of the velocity vector for the -phase, m/s - V averaging volume, m3 - V volume of the -phase contained within the averaging volume, m3 Greek Letters V/V, volume fraction of the -phase - mass density of the -phase, kg/m3 - viscosity of the -phase, Nt/m2 - arbitrary function used in the representation of the velocity deviation (see Equations (3.11) and (B1)), m/s - arbitrary function used in the representation of the pressure deviation (see Equations (3.12) and (B2)), s–1  相似文献   

16.
An asymptotic analysis of the Navier-Stokes equations is carried out for the case of hypersonic flow past wings of infinite span with a blunt leading edge when 0, Re , and M . Analytic solutions are obtained for an inviscid shock layer and inviscid boundary layer. The results of a numerical solution of the problems of vorticity interaction at the blunt edge and on the lateral surface of the wing are presented. These solutions are compared with the solution of the equations of a thin viscous shock layer and on the basis of this comparison the boundaries of the asymptotic regions are estimated.deceasedTranslated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 120–127, November–December, 1987.  相似文献   

17.
Summary Let denote the congruence of null geodesics associated with a given optical observer inV 4. We prove that determines a unique collection of vector fieldsM() ( =1, 2, 3) and (0) overV 4, satisfying a weak version of Killing's conditions.This allows a natural interpretation of these fields as the infinitesimal generators of spatial rotations and temporal translation relative to the given observer. We prove also that the definition of the fieldsM() and (0) is mathematically equivalent to the choice of a distinguished affine parameter f along the curves of, playing the role of a retarded distance from the observer.The relation between f and other possible definitions of distance is discussed.
Sommario Sia la congruenza di geodetiche nulle associata ad un osservatore ottico assegnato nello spazio-tempoV 4. Dimostriamo che determina un'unica collezione di campi vettorialiM() ( =1, 2, 3) e (0) inV 4 che soddisfano una versione in forma debole delle equazioni di Killing. Ciò suggerisce una naturale interpretazione di questi campi come generatori infinitesimi di rotazioni spaziali e traslazioni temporali relative all'osservatore assegnato. Dimostriamo anche che la definizione dei campiM(), (0) è matematicamente equivalente alla scelta di un parametro affine privilegiato f lungo le curve di, che gioca il ruolo di distanza ritardata dall'osservatore. Successivamente si esaminano i legami tra f ed altre possibili definizioni di distanza in grande.


Work performed in the sphere of activity of: Gruppo Nazionale per la Fisica Matematica del CNR.  相似文献   

18.
Inverse models to determine the permeability are generally based on existing forward models for the pressure. The permeabilities are adapted in such a way that the calculated pressures match the specified pressures in a number of points. To assimilate a priori knowledge about the flux, we introduce the flux assimilation method, which is based on the vector potential–pressure formulation of Darcy's law. Thanks to an unconventional discretization technique – the edge-based face element method – not only the specified pressures, but also specified information about the flux density can easily be assimilated. A relatively simple, but insightful analytical example illustrates the potential of this method.  相似文献   

19.
Gelatin gel properties have been studied through the evolution of the storage [G()] and the loss [G()] moduli during gelation or melting near the gel point at several concentrations. The linear viscoelastic properties at the percolation threshold follow a power-law G()G() and correspond to the behavior described by a rheological constitutive equation known as the Gel Equation. The critical point is characterized by the relation: tan = G/G = cst = tan ( · /2) and it may be precisely located using the variations of tan versus the gelation or melting parameter (time or temperature) at several frequencies. The effect of concentration and of time-temperature gel history on its variations has been studied. On gelation, critical temperatures at each concentration were extrapolated to infinite gel times. On melting, critical temperatures were determined by heating step by step after a controlled period of aging. Phase diagrams [T = f(C)] were obtained for gelation and melting and the corresponding enthalpies were calculated using the Ferry-Eldridge relation. A detailed study of the variations of A with concentration and with gel history was carried out. The values of which were generally in the 0.60–0.72 range but could be as low as 0.20–0.30 in some experimental conditions, were compared with published and theoretical values.  相似文献   

20.
The character of stability loss of the circular Couette flow, when the Reynolds number R passes through the critical value R0, is investigated within a broad range of variation of the wave numbers. The Lyapunov-Schmidt method is used [1, 2]; the boundary-value problems for ordinary differential equations arising in the case of its realization are solved numerically on a computer. It is shown that the branching character substantially depends on the wave number . For all a, excluding a certain interval (1, 2), the usual postcritical branching takes place: at a small supercriticality the circular flow loses stability and is softly excited into a secondary stationary flow — stable Taylor vortices. For wave numbers from the interval (1,2) a hard excitation of Taylor vortices takes place: at a small subcriticality R=R02 the secondary mode is unstable and merges with the Couette flow for 0; however, for a small supercriticality in the neighborhood of a circular flow there exist no stationary modes which are different.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 132–135, May–June, 1976.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号