首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have made theoretical studies on the trapping and recombination of photogenerated carriers in hydrogenated amorphous silicon (a-SiH) p-i-n solar cells. We discuss in detail the following points: 1) The limitations of the assumptions in the previous analysis. It has been clarified that the single-level Shockley-Read-Hall model for carrier recombination and the treatment of trap occupation in terms of quasi-Fermi levels are inadequate for exact analysis. 2) The superlinear dependence of carrier recombination rate on the free-carrier density which can explain the enhancement of photo-induced changes ina-SiH under high intensity light. 3) The estimation of capture cross section of the tail states ina-SiH. We show that the charged and neutral tail states have rather small capture cross sections of less than 10–16 cm2 and of less than 10–19 cm2, respectively. 4) The effect of the recombination of photogenerated (PG) carriers at the p/i and the n/i interfaces. We estimate the recombination velocityS of PG carriers at these interfaces to be about 103 cm/s. It has been also clarified that the decrease inS is effective to improve the cell performance, especially the open circuit voltage.  相似文献   

2.
We have reexamined the validity of quasi-static capacitance-voltage (C-V) measurements when applied to hydrogenated amorphous silicon (a-Si: H) diodes. Displacement currents with the application of a linear ramp voltage to an a-Si:H Schottky diode exhibit a slow response with time constants ranging 0.1–1 s which cannot be measured completely by the conventional measurements. The measured capacitance and the effective density of gap states obtained from the measurement depend on the timing of current observation even when the small value of the order of 0.01 V/s is chosen for the ramp rate. We propose a possible means to realize the true quasi-staticC-V measurement of a-Si:H diodes.  相似文献   

3.
The electrical properties and the degradation behavior of hydrogenated amorphous silicon alloys (a-Si1–x A x : H, with A=C, Ge, B, P) in designs of pin, pip, nin, and MOS structures are investigated by measuring the dark and light I(V) characteristics and the spectral response as well as the space-charge-limited current (SCLC), the time of flight (TOF) of carriers and the field effect (FE). These investigations give an overview of our recent work combined with new results emphasizing the physics of the a-Si:H pin solar cells. We discuss the stabilizing influence on the degradation behavior achieved by profiling the i layers of the pin solar cells with P and B. Two kinds of pin solar cells, namely glass/SnO2/p(C)in/metal and glass/metal/pin/ITO, are investigated and an explanation of their different spectral response behavior is given. SCLC measurements lead to the conclusion that trapping is also involved in the degradation mechanism, as is recombination. TOF experiments on a-Si1–x Ge x : H pin diodes indicate that the incorporation of Ge widens the tail-state distribution below the conduction band. FE measurements showed densities of gap states of about 5×l016cm–3eV–1.  相似文献   

4.
倪牮  张建军  曹宇  王先宝  李超  陈新亮  耿新华  赵颖 《中国物理 B》2011,20(8):87309-087309
This paper identifies the contributions of p-a-SiC:H layers and i-a-Si:H layers to the open circuit voltage of p-i-n type a-Si:H solar cells deposited at a low temperature of 125 C.We find that poor quality p-a-SiC:H films under regular conditions lead to a restriction of open circuit voltage although the band gap of the i-layer varies widely.A significant improvement in open circuit voltage has been obtained by using high quality p-a-SiC:H films optimized at the "low-power regime" under low silane flow rates and high hydrogen dilution conditions.  相似文献   

5.
刘伯飞  白立沙  魏长春  孙建  侯国付  赵颖  张晓丹 《物理学报》2013,62(20):208801-208801
采用射频等离子体增强化学气相沉积技术, 研究了非晶硅锗薄膜太阳电池. 针对非晶硅锗薄膜材料的本身特性, 通过调控硅锗合金中硅锗的比例, 实现了对硅锗薄膜太阳电池中开路电压和短路电流密度的分别控制. 借助于本征层硅锗材料帯隙梯度的设计, 获得了可有效用于多结叠层电池中的非晶硅锗电池. 关键词: 非晶硅锗薄膜太阳电池 短路电流密度 开路电压 带隙梯度  相似文献   

6.
Microcrystalline and amorphous hydrogenated silicon films were preparaed by rf planar magnetron sputtering in the four kinds of inert gas, i.e., He, Ne, Ar, and Kr. The dependence of such properties as x-ray diffraction, ir spectra, absorption coefficient, hydrogen content, dark conductivity and photoconductivity on the kind of inert gas was investigated. Such deposition conditions as hydrogen partial pressure, sputtering pressure and rf power were also studied mainly in relation to the microcrystallization of the films. Microcrystalline films with noticeably high deposition rate could be obtained in the case of Kr and Ar, compared to the case of He and Ne. Hydrogen concentration was found to correlate to the photoconductivity and activation energy of dark conductivity except for the case of He. Photosensitivity was appreciably larger for amorphous film than for microcrystalline one. Especially in the case of Kr, it was considerably larger than in other cases.  相似文献   

7.
The extra-mode at 214 cm-1 which is observed in the infrared spectrum of hydrogenated amorphous silicon is interpreted as being due to the presence of small (? 7 atoms) internal surfaces in the samples. Calculations of the phonon density of states at internal surfaces in bulk Si Bethe lattices show a pronounced peak at the edge of the TA band (≈ 210 cm-1. It is shown that when hydrogen is present the mode is infrared active through a dynamical charge transfer mechanism.  相似文献   

8.
Nanoindentation was carried out on thin films of hydrogenated amorphous silicon (a-Si:H) prepared by plasma-enhanced chemical vapor deposition. The composite values of elastic (Young's) modulus, E c, and hardness, H c, of the film/substrate system were evaluated from the load–displacement curves using the Oliver–Pharr approach. The film-only parameters were obtained employing the extrapolation of the depth profiles of E c and H c. Scanning probe microscopy was employed to image the nanoindenter impressions and to estimate the effect of film roughness and material pile-up on the testing results. It was established that the elastic modulus of thin a-Si:H films is in the range 117–131 GPa, which is lower than for crystalline silicon. In contrast, the values of hardness are in the range 12.2–12.7 GPa, which is comparable to crystalline silicon and higher than for hydrogen-free amorphous silicon. It is suggested that the plastic deformation of a-Si:H proceeds through plastic flow and it is the presence of hydrogen in the amorphous matrix that leads to a higher hardness.  相似文献   

9.
渐变带隙氢化非晶硅锗薄膜太阳能电池的优化设计   总被引:1,自引:0,他引:1       下载免费PDF全文
柯少颖  王茺  潘涛  何鹏  杨杰  杨宇 《物理学报》2014,63(2):28802-028802
利用一维微电子-光电子结构分析软件(AMPS-1D)在AM1.5G(100 mW/cm2)、室温条件下模拟和比较了有、无渐变带隙氢化非晶硅锗(a-SiGe:H)薄膜太阳能电池的各项性能.计算结果表明:渐变带隙结构电池具有较高的开路电压(V oc)和较好的填充因子(FF),转换效率(E ff)比非渐变带隙电池提高了0.477%.研究了氢化非晶硅(a-Si:H)、氢化非晶碳化硅(a-SiC:H)和氢化纳米晶硅(nc-Si:H)三种不同材料的窗口层对a-SiGe:H薄膜太阳能电池性能的影响.结果显示:在以nc-Si:H为窗口层的电池能带中,费米能级E F已经进入价带,使得窗口层电导率及电池开路电压有所提高,又由于ITO与p-nc-Si:H的接触势垒较低,使得接触处的电场降低,更有利于载流子的收集.另一方面,窗口层与a-SiGe:H薄膜之间存在较大的带隙差,在p/i界面由于能带补偿作用形成了价带势垒(带阶)?E v,阻碍了空穴的迁移,因此我们在p/i界面引入缓冲层,使得能带补偿作用得到释放,更有利于空穴的迁移和收集,得到优化后单结渐变带隙a-SiGe:H薄膜结构太阳能电池的转换效率达到了9.104%.  相似文献   

10.
Thin layers of a hydrogenated amorphous silicon were studied by means of the Auger electron spectroscopy (AES). It was found that the spectra of the a-Si : H samples exhibit a large peak at 34 eV which was ascribed to the L1L23V Coster-Kronig transition and that the intensity of the L23VV transition was lowered, due to hydrogenation. The explanation of this feature is given on the basis of the electronic structure and the transition probabilities changes in silicon, due to hydrogenation. The results on the a-Si : H layer were compared with measurement of the a-Si layer and the influence of an electron and an ion bombardment, an elevated temperature and an exposure to oxygen on both layers was studied.The author would like to expres hiss thanks to Dr. J. Zemek for supplying the a-Si and a-Si : H layers, to Dr. J. Drahokoupil and Dr. J. imnek for stimulating discussions and to Dr. V. Cháb for helpful discussions and for his help with measurements.  相似文献   

11.
12.
Plasma hydrogenation is an efficient method to passivate intergrain and intragrain defects of polycrystalline silicon (pc-Si) solar cells. The hydrogenation experiments were carried out in hydrogen plasma generated in an electron cyclotron resonance system controlling different operating parameters such as microwave power (P MW), process time (t H) and hydrogenation temperature (T H) for a fixed hydrogen flux of 30 sccm. The hydrogenation of n+pp+ pc-Si solar cells resulted in an improvement in the open-circuit voltage. The improvement was correlated with the dopant deactivation due to the formation of boron–hydrogen bonding. This was demonstrated from the changes in the doping level after hydrogenation of n+p diode structures made using single crystalline silicon as a reference material. It was found that deactivation of boron was more pronounced at high microwave plasma power, in good agreement with the high open-circuit voltage values obtained on pc-Si mesa cells. On the other hand, the effect of longer hydrogenation time and higher temperature resulted in a decrease of boron deactivation, while an increase in V oc with a tendency of saturation at high T H was observed. Reasons for such behavior were thoroughly explained.  相似文献   

13.
The thermal conductivity of amorphous silicon thin films is measured in one dimension steady state condition. The experimental method is based on heating the sample front surface and monitoring the temperatures at its two sides. The experiments were carried out in conditions ensuring one-direction heat flow from top to bottom throughout the sample thickness. Sputtered a-Si:H films prepared with different conditions are used in order to investigate the dependence of thermal conductivity on material properties (i.e. hydrogen content and microstructure). The results show that, firstly, amorphous silicon is a very bad thermal conductor material. Secondly, the disorder in the film network plays an important role in thermal conduction. The highly disordered film exhibits the lowest thermal conductivity.  相似文献   

14.
Hydrogenated amorphous silicon (a-Si:H) films with high and same order of magnitude photosensitivity (-10^5) but different stability were prepared by using microwave electron cyclotron resonance chemical vapour deposition system under the different deposition conditions. It was proposed that there was no direct correlation between the photosensitivity and the hydrogen content (CH) as well as H-Si bonding configurations, but for the stability, they were the critical factors. The experimental results indicated that higher substrate temperature, hydrogen dilution ratio and lower deposition rate played an important role in improving the microstructure of a-Si:H films. We used hydrogen elimination model to explain our experimental results.  相似文献   

15.
Ranber Singh  S. Prakash 《Pramana》2003,61(1):121-129
The problem of hydrogen diffusion in hydrogenated amorphous silicon (a-Si:H) is studied semiclassically. It is found that the local hydrogen concentration fluctuations-induced extra potential wells, if intense enough, lead to the localized electronic states in a-Si:H. These localized states are metastable. The trapping of electrons and holes in these states leads to the electrical degradation of the material. These states also act as recombination centers for photo-generated carriers (electrons and holes) which in turn may excite a hydrogen atom from a nearby Si-H bond and breaks the weak (strained) Si-Si bond thereby apparently enhancing the hydrogen diffusion and increasing the light-induced dangling bonds.  相似文献   

16.
Crystallization of hydrogenated amorphous silicon (a-SI:H) has been initiated using ultrashort laser-pulse train annealing. Optical microscopy, infrared absorption, Raman spectroscopy and photoluminescence measurements show that in our experiment the crystallized layer is localized on the surface and is non-epitaxial. The depth of the crystalline layer and its surface morphology are discussed. A sharp luminescence band at 0.970 eV with fine structure is found after laser annealing and is identified as a recombination center similar to irradiation induced defects in crystalline Si.  相似文献   

17.
Below-gap primary photocurrent associated with dangling bond defects in hydrogenated amorphous silicon has been investigated by measuring the amplitude and phase shift spectra with respect to the chopped excitation light. Theoretical analysis has been made on the temperature and chopping frequency dependence of the phase shift, yielding a conclusion that the doubly occupied dangling bond states are located at 0.5-0.6 eV below the conduction band edge.  相似文献   

18.
采用铂电极为加热电阻,研究了厚度为300—370nm等离子体化学气相沉积(PECVD)工艺制备的氢化非晶硅(a-Si:H)薄膜的热导率随衬底温度的变化规律.用光谱式椭偏仪拟合测量薄膜的厚度,得到了沉积速率随衬底温度变化规律,傅里叶红外(FTIR)表征了在KBr晶片衬底上制备的a-Si:H薄膜的红外光谱特性,SiH原子团键合模的震动对热量的吸收降低了薄膜热导率.从动力学角度分析了薄膜热导率随平均温度升高而增大的原因,并比较了声子传播和自由电子移动在a-Si:H薄膜热导率变化上的作用差异. 关键词: 非晶硅 热导率 薄膜 热能  相似文献   

19.
Passivation layer with linearly graded bandgap (LGB) was proposed to improve the performance of amorphous/crystalline silicon heterojunction (SHJ) solar cell by eliminating the large abrupt energy band uncontinuity at the a‐Si:H/c‐Si interface. Theoretical investigation on the a‐Si:H(p)/the LGB passivation layer(i)/c‐Si(n)/a‐Si:H(i)/a‐Si:H(n+) solar cell via AFORS‐HET simulation show that such LGB passivation layer could improve the solar cell efficiency (η) by enhancing the fill factor (FF) greatly, especially when the a‐Si:H(p) emitter was not efficiently doped and the passivation layer was relatively thick. But gap defects in the LGB passivation layer could make the improvement discounted due to the open‐circuit voltage (VOC) decrease induced by recombination. To overcome this, it was quite effective to keep the gap defects away from the middle of the bandgap by widening the minimum bandgap of the LGB passivation layer to be a little larger than that of the c‐Si base. The underlying mechanisms were analysed in detail. How to achieve the LGB passivation layer experimentally was also discussed. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

20.
S.C. Agarwal 《哲学杂志》2013,93(15):1642-1660
An attempt is made to highlight the importance of inhomogeneities in hydrogenated amorphous silicon (a-Si:H), in controlling its electronic properties. We note that hydrogen increases the gap in a-Si:H and that hydrogen is distributed inhomogeneously in it. This gives rise to long-range potential fluctuations, which are mostly uncorrelated and usually ignored. These and other such considerations have not only enabled us to gain new insights into the behaviour of a-Si:H in general, but have also allowed us to resolve several unsolved puzzles. Among these are questions like why undoped a-Si:H is n-type, why the creation of dangling bonds upon light soaking (LS) so inefficient, why a-Si:H degrades more upon LS when it is doped, why the reciprocity fails for light-induced degradation, why presence of nanocrystalline silicon improves stability and so on. We provide evidence to support some of our ideas and make suggestions for verifying the others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号