首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The existence of the facial isomer in the delta-phase of Alq3 is proven by X-ray structural analysis, revealing that both the different molecular structure and the weaker overlap of the pi-orbitals of hydroxyquinoline ligands belonging to neighboring Alq3 molecules as compared to other phases (alpha, beta) are likely to be the origin of the significantly different optical properties of delta-Alq3.  相似文献   

2.
Katakura R  Koide Y 《Inorganic chemistry》2006,45(15):5730-5732
Treatment of AlO(OH) with 3 equiv of 8-hydroxyquinolinol in refluxing deionized water provided the meridional and facial isomers of tris(8-hydroxyquinolinate)aluminum (Alq3) with good yields as solid deposits after 1 and 90 h, respectively. X-ray diffraction and solid-state 13C NMR studies revealed that mer-Alq3 is formed in the early stage of the reaction and then gradually converts to fac-Alq3, which is thermodynamically less stable, although no existence of a catalyst substance is implied.  相似文献   

3.
The synthesis, structures, electrochemistry, and photophysics of a series of facial (fac) and meridional (mer) tris-cyclometalated Ir(III) complexes are reported. The complexes have the general formula Ir(C'N)(3) [where C'N is a monoanionic cyclometalating ligand; 2-phenylpyridyl (ppy), 2-(p-tolyl)pyridyl (tpy), 2-(4,6-difluorophenyl)pyridyl (46dfppy), 1-phenylpyrazolyl (ppz), 1-(4,6-difluorophenyl)pyrazolyl (46dfppz), or 1-(4-trifluoromethylphenyl)pyrazolyl (tfmppz)]. Reaction of the dichloro-bridged dimers [(C'N(2)Ir(mu-Cl)(2)Ir(C'N)(2)] with 2 equiv of HC( wedge )N at 140-150 degrees C forms the corresponding meridional isomer, while higher reaction temperatures give predominantly the facial isomer. Both facial and meridional isomers can be obtained in good yield (>70%). The meridional isomer of Ir(tpy)(3) and facial and meridional isomers of Ir(ppz)(3) and Ir(tfmppz)(3) have been structurally characterized using X-ray crystallography. The facial isomers have near identical bond lengths (av Ir-C = 2.018 A, av Ir-N = 2.123 A) and angles. The three meridional isomers have the expected bond length alternations for the differing trans influences of phenyl and pyridyl/pyrazolyl ligands. Bonds that are trans to phenyl groups are longer (Ir-C av = 2.071 A, Ir-N av = 2.031 A) than when they are trans to heterocyclic groups. The Ir-C and Ir-N bonds with trans N and C, respectively, have bond lengths very similar to those observed for the corresponding facial isomers. DFT calculations of both the singlet (ground) and the triplet states of the compounds suggest that the HOMO levels are a mixture of Ir and ligand orbitals, while the LUMO is predominantly ligand-based. All of the complexes show reversible oxidation between 0.3 and 0.8 V, versus Fc/Fc(+). The meridional isomers are easier to oxidize by ca. 50-100 mV. The phenylpyridyl-based complexes have reduction potentials between -2.5 and -2.8 V, whereas the phenylpyrazolyl-based complexes exhibit no reduction up to the solvent limit of -3.0 V. All of the compounds have intense absorption bands in the UV region assigned into (1)(pi --> pi) transitions and weaker MLCT (metal-to-ligand charge transfer) transitions that extend to the visible region. The MLCT transitions of the pyrazolyl-based complexes are hypsochromically shifted relative to those of the pyridyl-based compounds. The phenylpyridyl-based Ir(III) tris-cyclometalates exhibit intense emission both at room temperature and at 77 K, whereas the phenylpyrazolyl-based derivatives emit strongly only at 77 K. The emission energies and lifetimes of the phenylpyridyl-based complexes (450-550 nm, 2-6 micros) and phenylpyrazolyl-based compounds (390-440 nm, 14-33 micros) are characteristic for a mixed ligand-centered/MLCT excited state. The meridional isomers for both pyridyl and pyrazolyl-based cyclometalates show markedly different spectroscopic properties than do the facial forms. Isolated samples of mer-Ir(C( wedge )N)(3) complexes can be thermally and photochemically converted to facial forms, indicating that the meridional isomers are kinetically favored products. The lower thermodynamic stabilities of the meridional isomers are likely related to structural features of these complexes; that is, the meridional configuration places strongly trans influencing phenyl groups opposite each other, whereas all three phenyl groups are opposite pyridyl or pyrazolyl groups in the facial complexes. The strong trans influence of the phenyl groups in the meridional isomers leads to the observation that they are easier to oxidize, exhibit broad, red-shifted emission, and have lower quantum efficiencies than their facial counterparts.  相似文献   

4.
Aluminum tris (quinoline-8-olate) (Alq3) is used as an electron-transport layer in organic light-emitting diodes. The material can be obtained in a wide range of different solid phases, both crystalline and amorphous, by deposition from the vapor phase or from solution under controlled conditions. While the structure of the crystalline polymorphs of Alq3 has been investigated thoroughly by x-ray diffraction as well as solid-state NMR, very little information is currently available on the amount of structural disorder in the amorphous forms of Alq3. In the present contribution, we report the use of 27Al NMR spectroscopy in the solid state under magic angle spinning to extract such information from amorphous vapor deposits of Alq3. The NMR spectra obtained from these samples exhibit different degrees of broadening, reflecting distributions of the electric-field gradient tensor at the site of the aluminum ion. These distributions can be obtained from the NMR spectra by solving the corresponding inverse problem. From these results, the magnitude of structural disorder in terms of molecular geometry has been estimated by density-functional theory calculations. It was found that the electric-field gradient anisotropy delta follows a bimodal distribution. Its majority component is centered around delta values comparable to the meridianal alpha crystal polymorph and has a width of about 10%, corresponding to distortions of the molecular geometry of a few degrees in the orientation of the ligands. Alq3 samples obtained at higher deposition rates exhibit higher degrees of disorder. The minor component, present at about 7%, has a much smaller anisotropy, suggesting that it may be due to the facial isomer of Alq3.  相似文献   

5.
Intermolecular interactions of alpha-, beta-, gamma- and heptakis(2,6-di-O-methyl)-beta-cyclodextrin (CD) with syringic acid (Syr) in aqueous solution are investigated by fluorescence spectroscopy. The fluorescence intensity of Syr gradually increases with the addition of the CDs. The formation constants (K) of the host-guest inclusion complexes are determined using a nonlinear analysis. The association abilities of Syr with the CDs decrease in the order gamma->beta->alpha- approximately DMbeta-CD. Both the intrinsic binding abilities of the CDs and the structural effect of Syr are taken into consideration when comparing the K values. Based on the results of NMR experimental and theoretical PM3 calculations both in vacuo and in water, it is found that Syr stays near the wider rim of alpha-CD cavity. Both the number of substituted groups (NSG) in a guest and the molar volume ratio of the guest to host cavity (MVR) play an important role in forming the CD supramolecular complexes of a homologous series of phenol derivatives, such as 2-methoxylphenol (2-Mop), eugenol (Eug) and Syr, i.e., an appropriate NSG or MVR in an inclusion system, such as in 2-Mop-alpha-CD, Eug-beta-CD and Syr-gamma-CD systems, can maximize the intermolecular interaction between host and guest.  相似文献   

6.
The didentate ligand 2-phenylazopyridine (azpy) can--in theory--give rise to five different isomeric complexes of the type [Ru(azpy)2Cl2], of which three have been known since 1980. The molecular structures of the cis-dichlorobis(2-phenylazopyridine) ruthenium(II) complexes alpha-[Ru(azpy)2Cl2] and beta-[Ru(azpy)2Cl2](in which the coordinating pyridine nitrogen atoms are in mutually trans and cis positions, respectively, whilst the azo nitrogen atoms are in mutually cis positions) were unambiguously determined in the early 1980s. The third isomer, gamma-[Ru(azpy)2Cl2], has for two decades, erroneously, been assumed to be the all-trans isomer. In a recent communication we have proven that for this gamma isomer the chloride ions are indeed in a trans geometry, but the pyridine nitrogen and azo nitrogen atoms of the two azpy ligands are in mutually cis geometries. In this paper the isolation of a fourth isomer is presented, the hitherto unknown delta-[Ru(azpy)2Cl2]. The isomeric structure of delta-[Ru(azpy)2Cl2] has been determined by 1H-NMR spectroscopy and single-crystal X-ray diffraction analysis, and is the all-trans isomer. The bis(azpy)-ruthenium(II) isomers are of interest because of the pronounced cytotoxicity they exhibit against tumour cell lines and could be very useful in the search for structure-activity relationships of antitumour-active ruthenium complexes, as among the isomers there is a significant difference in activity. It is of paramount importance to have a good understanding of the structural and spectroscopic properties of these complexes, which in this paper are compared and discussed, with a particular emphasis on 1D and 2D 1H NMR spectroscopies.  相似文献   

7.
Changes in the molecular state of benzoic acid (BA) in the presence of folded sheet mesoporous material (FSM-16), which has uniformly sized cylindrical mesopores and a large surface area, were assessed with several analyses. When BA was blended with FSM-16 for 5 min (BA content=30%), the X-ray diffraction peaks of BA crystals disappeared, suggesting an amorphous state. Fluorescence analysis of the mixture showed a new fluorescence emission peak for BA at 386 nm after mixing with FSM-16. Fluorescence lifetime analysis of the BA component in the mixture at 386 nm showed a longer lifetime in comparison with that of BA crystals. The solid-state (13)C CP/MAS and PST/MAS NMR spectra of the mixture with FSM-16 showed a significantly different spectral pattern from the mixture with nonporous glass, whose NMR spectra were identical to those of BA crystals. These results indicate that BA molecules disperse quickly into the hexagonal channels of FSM-16 by a simple blending procedure and adsorbed BA molecules had clearly different physicochemical properties to BA crystals.  相似文献   

8.
Two novel dioxolane-substituted pentacene derivatives, namely, 6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]pentacene (TP-5) and 2,2,10,10-tetraethyl-6,14-bis-(triisopropylsilylethynyl)-1,3,9,11-tetraoxa-dicyclopenta[b,m]pentacene (EtTP-5), have been synthesized and spectroscopically characterized. Here, we examine the steady-state and time-resolved photoluminescence (PL) of solid-state composite films containing these pentacene derivatives dispersed in tris(quinolin-8-olato)aluminum(III) (Alq(3)). The films show narrow red emission and high absolute photoluminescence quantum yields (phi(PL) = 59% and 76% for films containing approximately 0.25 mol % TP-5 and EtTP-5, respectively). The F?rster transfer radius for both guest-host systems is estimated to be approximately 33 A. The TP-5/Alq(3) thin films show a marked decrease in phi(PL) with increasing guest molecule concentrations, accompanied by dramatic changes in the PL spectra, suggesting that intermolecular interactions between pentacene molecules result in the formation of weakly radiative aggregates. In contrast, a lesser degree of fluorescence quenching is observed for EtTP-5/Alq(3) films. The measured fluorescence lifetimes of TP-5 and EtTP-5 are similar (approximately 18 ns) at low concentrations but deviate at higher concentrations as aggregation begins to play a role in the TP-5/Alq(3) films. The onset of aggregation in EtTP-5/Alq(3) films occurs at higher guest molecule concentrations (>1.00 mol %). The addition of ethyl groups on the terminal dioxolane rings leads to an increase in the intermolecular spacing in the solid, thereby reducing the tendency for pi-pi molecular stacking and aggregation.  相似文献   

9.
The 13C CP/MAS NMR spectra of isotactic, syndiotactic and atactic poly(vinyl alcohol) (PVA) gels were measured in order to clarify the structure of the immobile component of PVA gel. In the 13C CP/MAS NMR spectra, the three CH carbon peaks I, II and III (at about 77, 71 and 65 ppm) were clearly observed, which originate from the formation of strong intermolecular or intramolecular hydrogen bonds between hydroxyl groups like solid PVA. It has been assigned that these peaks originate from the crosslinked region in the gel state. On the basis of the experimental results, intermolecular hydrogen bonds play an important role in the formation of the crosslinked-region in the gel state. Further, the effect of PVA's tacticity on the amount of the crosslinked regions by intermolecular interactions was discussed. In addition, molecular motion in the immobile and mobile region of PVA gel was discussed through the observation of 13C spin-lattice relaxation time T1.  相似文献   

10.
The synthesis and single-crystal X-ray structures of two quinacridone derivatives, N,N'-di(n-butyl)quinacridone (1) and N,N'-di(n-butyl)-1,3,8,10-tetramethylquinacridone (2), are reported, and the 1H NMR, absorption, photoluminescent (PL), and electroluminescent (EL) characteristics are presented. Both these crystal structures are characterized by intermolecular pi...pi and hydrogen bonding interactions. The intermolecular pi...pi interactions lead to the formation of molecular columns in the solids of 1 and 2, and the interplanar contact distances between two adjacent molecules are 3.48 and 3.55 angstroms, respectively. Crystals of 1 display shorter intermolecular pi...pi contacts and higher density than 2. These results suggest that tighter intermolecular interactions exist in 1. The 1H NMR, absorption, and PL spectra of 1 and 2 in solutions exhibit concentration-dependent properties. The PL quantum yields of 1 in solutions decrease more quickly with the increase of concentration compared to that of 2 in solutions. For solid thin films of Alq3:1 (Alq3 = tris(8-hydroxyquinolinato)aluminum), emission intensities dramatically decrease and obvious red shifts are observed when the dopant concentration is above 4.2%, while for films of Alq3:2, a similar phenomenon occurs when the concentration is above 6.7%. EL devices with Alq3:1 as emitting layer only show high efficiencies (20.3-14.5 cd/A) within the narrow dopant concentration range of 0.5-1.0%. In contrast, high efficiencies (21.5-12.0 cd/A) are achieved for a wider dopant concentration range of 0.5-5.0% when Alq3:2 films are employed as emitting layer. The different PL and EL concentration-dependent properties of the solid thin films Alq3:1 and Alq3:2 are attributed to their different molecular packing characteristics in the solid state.  相似文献   

11.
The packing and dynamics of the beta-, gamma-, and delta-forms of poly(3-hydroxypropionate) (P3HP), which represents the basic skeleton of bacterial poly(3-hydroxyalkanoate)s, were investigated by the variable-temperature FTIR and (13)C solid-state NMR measurements (SNMR). Under cooling, most of IR bands in the 1500-750 cm(-1) region were noted to be distinctively blueshifted and enhanced, which should reflect the increased intermolecular interaction and depend on the chain packing of each crystal form. Furthermore, the temperature-dependent splitting of vibration were found to occur at the CH2 bending and rocking for the gamma-form, and at the CH2 bending and C-O-C stretching for the delta-form, while be absent for the beta-form. All the FTIR results indicate that the gamma-form has a stronger intermolecular interaction than the beta-form, although both adopt the all-trans conformation. The IR evidence measured during heating further reveal that the melting of the tightly packed gamma-form would pass through some mesophase, which lacks the regular packing but hold the long-range order along the chains. The delta-form was also found to be tightly packed, and contain at least and most possibly two chains in one unit cell. The CP/MAS (13)C SNMR spectrum of the delta-form was compared with those of the beta- and gamma-forms, and was well explained by combining the gamma-gauche and gamma-eclipsed effects. With considering possible differences in the magnetic dipole-dipole interaction among three crystal forms, the molecular mobilities of crystalline phases were estimated by the values of (13)C spin-lattice relaxation time to rank as delta < gamma < beta. The diversified mobilities of three polymorphic crystalline phases, which is the key to crystalline-structure dependent biodegradability of P3HP, were discussed with considering the packing and conformation.  相似文献   

12.
The preparation of the alpha-1 and alpha-2 isomers of the Wells-Dawson 17 tungsto derivatives by standard methods is accompanied by a significant proportion of the other isomer present as an impurity. In this study, the alpha-1 and alpha-2 isomers of [Zn(H(2)O)P(2)W(17)O(61)](8)(-) have been prepared in >98% purity by reacting isomerically pure K(9)Li[alpha-1-P(2)W(17)O(61)] and K(10)[alpha-2-P(2)W(17)O(61)], respectively, with ZnCl(2), while rigorously controlling the pH at 4.7. The molecules were isolated as potassium salts. For (183)W NMR and (31)P NMR characterization, both molecules were ion exchanged by cation-exchange chromatography, maintaining the pH at 4.7, to obtain the lithium salts. Removal of water and isolation of a solid sample of [alpha-1-Zn(H(2)O)P(2)W(17)O(61)](8)(-) was achieved by lyophilization at -40 degrees C. The chemical shift data from (31)P and (183)W NMR spectroscopy of the isolated [alpha-1-Zn(H(2)O)P(2)W(17)O(61)](8)(-) and [alpha-2-Zn(H(2)O)P(2)W(17)O(61)](8)(-) isomers are consistent with a mixture of the alpha-1 and alpha-2 isomers reported previously;(1) the molecules have the expected C(1) and C(s)() symmetry, respectively. The [alpha-1-Zn(H(2)O)P(2)W(17)O(61)](8)(-) isomer is stable in the pH range of 4.6-6 at temperatures <35 degrees C. Using the same ion exchange and lyophilization techniques, the lacunary [alpha-1-P(2)W(17)O(61)](10)(-) isomer was isolated as the lithium salt; characterization by (183)W NMR spectroscopy confirms the C(1) symmetry.  相似文献   

13.
Through the use of alpha-, beta-, gamma- and heptakis(2,6-di-O-methyl)-beta-cyclodextrin as stereospecific selectors or electrolyte modifiers, both in capillary zone electrophoresis and isotachophoresis, selected model isomeric compounds (including optical isomers) were resolved. Soluble alkylhydroxyalkylcellulose derivatives were further added to the cyclodextrin-modified background electrolytes under study. Their presence was found to be essential, as demonstrated by improvements in both enantioselectivity and separation efficiency. The results obtained in both electrophoretic modes, under optimized conditions, are compared and discussed.  相似文献   

14.
Polymorphism of Bis(dineopentoxyphosphorothioyl)diselenide – Correlation of X‐Ray Structure and MAS NMR Data The crystal structures of two polymorphs of the title compound were determined by single‐crystal X‐ray methods and refined both at room temperature and 250 K. A triclinic and a monoclinic phase were discovered and studied. Both modifications are centrosymmetrical layer structures. The numerically clearly significant differences were observed in unit cell volumes as well as in alternating disproportions of distances of atoms being chemically and crystallographically equivalent as a result of discontinuously distributed conformational changes along the single bonds. Phase transitions were not observed by cooling up to 240 K. Lowering temperatures single crystals of both phases decompose because of the considerable anisotropy of intermolecular interaction. The small differences of molecular structure produce slightly splitted 31P CP MAS NMR signals. A comparison of the chemical shifts from 13C CP MAS NMR spectra and from quantum‐chemical calculations leads to the conclusion that the inner rotation around CH2–Cq bonds is not frozen in the solid state.  相似文献   

15.
Radicals formed by the addition of hydrogen (H) or muonium (Mu) to tris(8-hydroxyquinoline)aluminum(III) (Alq(3)) have been studied using density functional theory (DFT) calculations. Drew et al. (Phys. Rev. Lett. 2008, 100, 116601) studied Alq(3) using the longitudinal field muon spin relaxation technique and assumed the formation of muoniated radicals and rapid intermolecular electron hopping with a rate of (1.4 ± 0.2) × 10(12) s(-1). In this work, the results of DFT calculations on Alq(3), the H/Mu adducts of Alq(3), and the corresponding anions and cations are reported. The energy required to transfer an electron to or from the H/Mu adducts of Alq(3) is prohibitively large, ranging from 4.09 to 5.68 eV, which suggests that the unpaired electron does not hop onto neighboring molecules and that there is no long-range diffusion of the unpaired electron. The hyperfine coupling constants for the muoniated radicals were calculated and used to predict avoided level crossing resonance fields, which will allow experimenters to confirm that the unpaired electron is localized in close proximity to the muon.  相似文献   

16.
The unsymmetrical tridentate benzimidazole-pyridine-carboxamide units in ligands L1-L4 react with trivalent lanthanides, Ln(III), to give the nine-co-ordinate triple-helical complexes [Ln(Li)3]3+ (i = 1-4) existing as mixtures of C3-symmetrical facial and C1-symmetrical meridional isomers. Although the beta13 formation constants are 3-4 orders of magnitude smaller for these complexes than those found for the D3-symmetrical analogues [Ln(Li)3]3+ (i = 5-6) with symmetrical ligands, their formation at the millimolar scale is quantitative and the emission quantum yield of [Eu(L2)3]3+ is significantly larger. The fac-[Ln(Li)3]3+ <--> mer-[Ln(Li)3]3+ (i = 1-4) isomerisation process in acetonitrile is slow enough for Ln = Lu(III) to be quantified by 1H NMR below room temperature. The separation of enthalpic and entropic contributions shows that the distribution of the facial and meridional isomers can be tuned by the judicious peripheral substitution of the ligands affecting the interstrand interactions. Molecular mechanics (MM) calculations suggest that one supplementary interstrand pi-stacking interaction stabilises the meridional isomers, while the facial isomers benefit from more favourable electrostatic contributions. As a result of the mixture of facial and meridional isomers in solution, we were unable to obtain single crystals of 1:3 complexes, but the X-ray crystal structures of their nine-co-ordinate precursors [Eu(L1)2(CF3SO3)2(H2O)](CF3SO3)(C3H5N)2(H2O) (6, C45H54EuF9N10O13S3, monoclinic, P2(1)/c, Z = 4) and [Eu(L4)2(CF3SO3)2(H2O)](CF3SO3)(C4H4O)(1.5) (7, C51H66EuF9N8O(15.5)S3, triclinic, P1, Z = 2) provide crucial structural information on the binding mode of the unsymmetrical tridentate ligands.  相似文献   

17.
Crystalline thermosetting blends composed of 2,2′‐bis[4‐(4‐aminophenoxy)phenyl]propane‐crosslinked epoxy resin (ER) and poly(?‐caprolactone) (PCL) were investigated by means of Fourier transform infrared (FTIR) spectroscopy and high‐resolution solid‐state NMR spectroscopy. FTIR investigations indicated that there were specific intermolecular interactions between ER and PCL and that the intermolecular hydrogen‐bonding interactions were weaker than the self‐association in pure epoxy. The intermolecular hydrogen bonding was considered to be the driving force for the miscibility of the thermosetting blends. For the examination of the miscibility of the thermosetting blends at the molecular level, high‐resolution solid‐state 13C cross‐polarity/magic‐angle spinning (CP‐MAS) NMR spectroscopy was employed. The line width of 13C CP‐MAS spectra decreased with increasing PCL contents, and the chemical shift of the carbonyl carbon resonance of PCL shifted to a low field with an increasing epoxy content in the blends. The proton spin–lattice relaxation experiments in the laboratory frame showed that all the blends possessed identical, composition‐dependent relaxation times (i.e., the proton spin–lattice relaxation times in the laboratory frame), suggesting that the thermosetting blends were homogeneous on the scale of 20–30 nm in terms of the spin‐diffusion mechanism, and this was in a good agreement with the results of differential scanning calorimetry and dynamic mechanical analysis. For the examination of the miscibility of the blends at the molecular level, the behavior of the proton lattice relaxation in the rotating frame was investigated. The homogeneity of the thermosetting blends at the molecular level was quite dependent on the blend composition. The PCL‐lean ER/PCL blends (e.g., 70/30) displayed a single homogeneous amorphous phase, and the molecular chains were intimately mixed on the segmental scale. The PCL‐rich blends displayed biexponential decay in experiments concerning the proton spin–lattice relaxation times in the rotating frame, which was ascribed to amorphous and crystalline phases. In the amorphous region, the molecular chains of epoxy and PCL were intimately mixed at the molecular level. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1099–1111, 2003  相似文献   

18.
The synthesis and isolation of the complex cis,fac-[RuIICl2(bpea)(PPh3)][3; bpea = N,N-bis(2-pyridylmethyl)ethylamine] and three geometrical isomers of the complex [RuIICl(bpea)(dppe)](BF4) [4; dppe = (1,2-diphenylphosphino)ethane], trans,fac (4a), cis,fac (4b), and mer(down) (4c), have been described (see Chart 1 for a drawing of their structures). These complexes have been characterized through analytical, spectroscopic (IR, UV/vis, and 1D and 2D NMR), and electrochemical (cyclic voltammetry) techniques. In addition, complexes 3, 4a, and 4b have been further characterized in the solid state through monocrystal X-ray diffraction analysis. The molecular and electronic structures of isomers 4a, 4b, 4c, and 4d (the mer(up) isomer) have also been studied by means of density functional theory (DFT) calculations. Furthermore, their low-energy electronic transitions have been simulated using time-dependent DFT approaches, which have allowed unraveling of their metal-to-ligand charge-transfer nature. Complexes 3 and 4a-c are capable of catalyzing H-transfer types of reactions between alcohols and aromatic ketones such as acetophenone and 2,2-dimethylpropiophenone (DP). A strong influence of the facial versus meridional geometry in the bpea ligand coordination mode is observed for these catalytic reactions, with the meridional isomer being much more active than the facial one. The meridional isomer is even capable of carrying out the H-transfer reaction of bulky substrates such as DP at room temperature.  相似文献   

19.
A novel green emissive Alq(3) solid with a facial isomeric form has been obtained by grinding the typical blue luminescent fac-Alq(3) crystalline powder. This is the first report, to the best of our knowledge, that a fac-Alq(3) isomer emits green light.  相似文献   

20.
The structure of the very strong solid Lewis acid aluminum chlorofluoride (ACF, AlCl(x)F(3-x), x = 0.05-0.3) was studied by IR, ESR, Cl K XANES, (19)F MAS NMR, and (27)Al SATRAS NMR spectroscopic methods and compared with amorphous aluminum fluoride conventionally prepared by dehydration of alpha-AlF(3) x 3H(2)O. The thermal behavior of both compounds was investigated by DTA and XRD. In comparison to ACF, amorphous AlF(3) prepared in a conventional way is not catalytically active for the isomerization reaction of 1,2-dibromohexafluoropropane, which requires a very strong Lewis acid. Both compounds are mainly built up of corner-sharing AlF(6) octahedra forming a random network. The degree of disorder in ACF is higher than in amorphous AlF(3). Terminal fluorine atoms were detected in ACF by (19)F NMR. The chlorine in ACF does not exist as a separate, crystalline AlCl(3) phase. Additionally, chlorine-containing radicals, remaining from the synthesis, are trapped in cavities of ACF. These radicals are stable at room temperature but do not take part in the catalytic reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号