首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray crystal structures are reported for the following complexes: [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O (tacn = 1,4,7-triazacyclononane), monoclinic P2(1)/n, Z = 4, a = 14.418(8) ?, b = 11.577(3) ?, c = 18.471(1) ?, beta = 91.08(5) degrees, V = 3082 ?(3), R(R(w)) = 0.039 (0.043) using 4067 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, monoclinic P2(1)/a, Z = 4, a = 13.638(4) ?, b = 12.283(4) ?, c = 18.679(6) ?, beta = 109.19(2) degrees, V = 3069.5 ?(3), R(R(w)) = 0.052 (0.054) using 3668 unique data with I > 2.5sigma(I) at 293 K; [Ru(2)I(3)(tacn)(2)](PF(6))(2), cubic P2(1)/3, Z = 3, a = 14.03(4) ?, beta = 90.0 degrees, V = 2763.1(1) ?(3), R (R(w)) = 0.022 (0.025) using 896 unique data with I > 2.5sigma(I) at 293 K. All of the cations have cofacial bioctahedral geometries, although [Ru(2)Cl(3)(tacn)(2)](PF(6))(2).4H(2)O, [Ru(2)Br(3)(tacn)(2)](PF(6))(2).2H(2)O, and [Ru(2)I(3)(tacn)(2)](PF(6))(2) are not isomorphous. Average bond lengths and angles for the cofacial bioctahedral cores, [N(3)Ru(&mgr;-X)(3)RuN(3)](2+), are compared to those for the analogous ammine complexes [Ru(2)Cl(3)(NH(3))(6)](BPh(4))(2) and [Ru(2)Br(3)(NH(3))(6)](ZnBr(4)). The Ru-Ru distances in the tacn complexes are longer than those in the equivalent ammine complexes, probably as a result of steric interactions.  相似文献   

2.
The normally robust monoalkylated complexes [Pt(2)(mu-S)(mu-SR)(PPh(3))(4)](+) can be activated towards further alkylation. Dialkylated complexes [Pt(2)(mu-SR)(2)(P-P)(2)](2+) (P-P=2 x PPh(3), Ph(2)P(CH(2))(3)PPh(2)) can be stabilized and isolated by the use of electron-rich and aromatic halogenated substituents R [e.g. 3-(2-bromoethyl)indole and 2-bromo-4'-phenylacetophenone] and 1,3-bis(diphenylphosphino)propane [Ph(2)P(CH(2))(3)PPh(2) or dppp] which enhances the nucleophilicity of the {Pt(2)(mu-S)(2)} core. This strategy led to the activation of [Pt(2)(mu-S)(mu-SR)(PPh(3))(4)](+) towards R-X as well as isolation and crystallographic elucidation of [Pt(2)(mu-SC(10)H(10)N)(2)(PPh(3))(4)](PF(6))(2) (2a), [Pt(2)(mu-SCH(2)C(O)C(6)H(4)C(6)H(5))(2)(PPh(3))(4)](PF(6))(2) (2b), and a range of functionalized-thiolato bridged complexes such as [Pt(2)(mu-SR)(2)(dppp)(2)](PF(6))(2) [R= -CH(2)C(6)H(5) (8a), -CH(2)CHCH(2) (8b) and -CH(2)CN (8c)]. The stepwise alkylation process is conveniently monitored by Electrospray Ionisation Mass Spectrometry, allowing for a direct qualitative comparison of the nucleophilicity of [Pt(2)(mu-S)(2)(P-P)(2)], thereby guiding the bench-top synthesis of some products observed spectroscopically.  相似文献   

3.
The complex [Rh(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (1) has been prepared by reaction of the precursor [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), 2,6-bis[4'(S)-isopropyloxazolin-2'-yl]pyridine (pybox), CO, and NaPF(6). Complex 1 reacts with monodentate phosphines to give the complexes [Rh(kappa(1)-N-pybox)(CO)(PR(3))(2)][PF(6)] (R(3) = MePh(2) (2), Me(2)Ph (3), (C(3)H(5))Ph(2) (4)), which show a previously unseen monodentate coordination of pybox. Complex 1 undergoes oxidative addition reactions with iodine and CH(3)I leading to the complexes [RhI(R)(kappa(3)-N,N,N-pybox)(CO)][PF(6)] (R = I (5); R = CH(3) (6)). Furthermore, a new allenyl Rh(III)-pybox complex of formula [Rh(CH=C=CH(2))Cl(2)(kappa(3)-N,N,N-pybox)] (7) has been synthesized by a one-pot reaction from [Rh(mu-Cl)(eta(2)-C(2)H(4))(2)](2), pybox, and an equimolar amount of propargyl chloride.  相似文献   

4.
A series of linear-type Co(III)Pt(II)Co(III) trinuclear complexes composed of C(2)-cis(S)-[Co(aet)(2)(en)](+) (aet = 2-aminoethanethiolate) and/or Lambda(D)-trans(N)-[Co(D-pen-N,O,S)(2)](-) (D-pen = D-penicillaminate) were newly prepared, and their chiral behavior, which is markedly different from that of the corresponding Co(III)Pd(II)Co(III) complexes, is reported. The 1:1 reaction of an S-bridged Co(III)Ni(II)Co(III) trinuclear complex, [Ni[Co(aet)(2)(en)](2)]Cl(4), with K(2)[PtCl(4)] in water gave an S-bridged Co(III)Pt(II)Co(III) trinuclear complex, [Pt[Co(aet)(2)(en)](2)]Cl(4) ([1]Cl(4)), while the corresponding 1:2 reaction produced an S-bridged Co(III)Pt(II) dinuclear complex, [PtCl(2)[Co(aet)(2)(en)]]Cl ([2]Cl). Complex [1](4+) formed both racemic (DeltaDelta/LambdaLambda) and meso (DeltaLambda) forms, which were separated and optically resolved by cation-exchange column chromatography. An optically active S-bridged Co(III)Pt(II)Co(III) trinuclear complex having the pseudo LambdaLambda configuration, Lambda(D)Lambda(D)-[Pt[Co(D-pen-N,O,S)(2)](2)](0) (Lambda(D)Lambda(D)-[3]), was also prepared by reacting Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] with K(2)[PtCl(4)] in a ratio of 2:1 in water. Treatment of the racemic Delta/Lambda-[2]Cl with Lambda(D)-trans(N)-K[Co(D-pen-N,O,S)(2)] in a ratio of 1:1 in water led to the formation of LambdaLambda(D)- and DeltaLambda(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,O,S)(2)]](2+) (LambdaLambda(D)- and DeltaLambda(D)-[4](2+)) and DeltaDelta(D)-[Pt[Co(aet)(2)(en)][Co(D-pen-N,S)(2)(H(2)O)(2)]](2+) (DeltaDelta(D)-[4'](2+)), besides trace amounts of Lambda(D)Lambda(D)-[3] and DeltaDelta- and DeltaLambda-[1](4+). These Co(III)Pt(II)Co(III) complexes were characterized on the basis of electronic absorption, CD, and NMR spectra, along with single-crystal X-ray analyses for DeltaDelta/LambdaLambda-[1]Cl(4), DeltaLambda-[1]Cl(4), and DeltaLambda(D)-[4]Cl(2). Crystal data: DeltaDelta/LambdaLambda-[1]Cl(4).6H(2)O, monoclinic, space group C2/c with a = 14.983(3) A, b = 19.857(4) A, c = 12.949(3) A, beta = 113.51(2) degrees, V = 3532(1) A(3), Z = 4; DeltaLambda-[1]Cl(4).3H(2)O, orthorhombic, space group Pbca with a = 14.872(3) A, b = 14.533(3) A, c = 14.347(2) A, V = 3100(1) A(3), Z = 4; DeltaLambda(D)-[4]Cl(2).6H(2)O, monoclinic, space group P2(1) with a = 7.3836(2) A, b = 20.214(1) A, c = 10.622(2) A, beta = 91.45(1) degrees V = 1682.0(4) A(3), Z = 2.  相似文献   

5.
The symmetric rhenium(V) oxo Schiff base complexes trans-[ReO(OH2)(acac2en)]Cl and trans-[ReOCl(acac2pn)], where acac2en and acac2pn are the tetradentate Schiff base ligands N,N'-ethylenebis(acetylacetone) diimine and N,N'-propylenebis(acetylacetone) diimine, respectively, were reacted with monodentate phosphine ligands to yield one of two unique cationic phosphine complexes depending on the ligand backbone length (en vs pn) and the identity of the phosphine ligand. Reduction of the Re(V) oxo core to Re(III) resulted on reaction of trans-[ReO(OH2)(acac2en)]Cl with triphenylphosphine or diethylphenylphosphine to yield a single reduced, disubstituted product of the general type trans-[Re(III)(PR3)2(acac2en)]+. Rather unexpectedly, a similar reaction with the stronger reducing agent triethylphosphine yielded the intramolecularly rearranged, asymmetric cis-[Re(V)O(PEt3)(acac2en)]+ complex. Reactions of trans-[Re(V)O(acac2pn)Cl] with the same phosphine ligands yielded only the rearranged asymmetric cis-[Re(V)O(PR3)(acac2pn)]+ complexes in quantitative yield. The compounds were characterized using standard spectroscopic methods, elemental analyses, cyclic voltammetry, and single-crystal X-ray diffraction. The crystallographic data for the structures reported are as follows: trans-[Re(III)(PPh3)2(acac2en)]PF6 (H48C48N2O2P2Re.PF6), 1, triclinic (P), a = 18.8261(12) A, b = 16.2517(10) A, c = 15.4556(10) A, alpha = 95.522(1) degrees , beta = 97.130(1) degrees , gamma = 91.350(1) degrees , V = 4667.4(5) A(3), Z = 4; trans-[Re(III)(PEt2Ph)2(acac2en)]PF6 (H48C32N2O2P2Re.PF6), 2, orthorhombic (Pccn), a = 10.4753(6) A, b =18.4315(10) A, c = 18.9245(11) A, V = 3653.9(4) A3, Z = 4; cis-[Re(V)O(PEt3)(acac2en)]PF6 (H33C18N2O3PRe.1.25PF6, 3, monoclinic (C2/c), a = 39.8194(15) A, b = 13.6187(5) A, c = 20.1777(8) A, beta = 107.7730(10) degrees , V = 10419.9(7) A3, Z = 16; cis-[Re(V)O(PPh3)(acac2pn)]PF6 (H35C31N2O3PRe.PF6), 4, triclinic (P), a = 10.3094(10) A, b =12.1196(12) A, c = 14.8146(15) A, alpha = 105.939(2) degrees , beta = 105.383(2) degrees , gamma = 93.525(2) degrees , V = 1698.0(3) A3, Z = 2; cis-[Re(V)O(PEt2Ph)(acac2pn)]PF6 (H35C23N2O3PRe.PF6), 5, monoclinic (P2(1)/n), a = 18.1183(18) A, b = 11.580(1) A, c = 28.519(3) A, beta = 101.861(2) degrees , V = 5855.9(10) A(3), Z = 4.  相似文献   

6.
Reaction between the Os(VI)-hydrazido complex, trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (tpy = 2,2':6',2"-terpyridine and O(CH(2))(4)N(-) = morpholide), and a series of N- or O-bases gives as products the substituted Os(VI)-hydrazido complexes, trans-[Os(VI)(4'-RNtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) or trans-[Os(VI)(4'-ROtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (RN(-) = anilide (PhNH(-)); S,S-diphenyl sulfilimide (Ph(2)S=N(-)); benzophenone imide (Ph(2)C=N(-)); piperidide ((CH(2))(5)N(-)); morpholide (O(CH(2))(4)N(-)); ethylamide (EtNH(-)); diethylamide (Et(2)N(-)); and tert-butylamide (t-BuNH(-)) and RO(-) = tert-butoxide (t-BuO(-)) and acetate (MeCO(2)(-)). The rate law for the formation of the morpholide-substituted complex is first order in trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) and second order in morpholine with k(morp)(25 degrees C, CH(3)CN) = (2.15 +/- 0.04) x 10(6) M(-)(2) s(-)(1). Possible mechanisms are proposed for substitution at the 4'-position of the tpy ligand by the added nucleophiles. The key features of the suggested mechanisms are the extraordinary electron withdrawing effect of Os(VI) on tpy and the ability of the metal to undergo intramolecular Os(VI) to Os(IV) electron transfer. These substituted Os(VI)-hydrazido complexes can be electrochemically reduced to the corresponding Os(V), Os(IV), and Os(III) forms. The Os-N bond length of 1.778(4) A and Os-N-N angle of 172.5(4) degrees in trans-[Os(VI)(4'-O(CH(2))(4)Ntpy)(Cl)(2)(NN(CH(2))(4)O)](2+) are consistent with sp-hybridization of the alpha-nitrogen of the hydrazido ligand and an Os-N triple bond. The extensive ring substitution chemistry implied for the Os(VI)-hydrazido complexes is discussed.  相似文献   

7.
A novel, and quite general, approach for the preparation of tris(heteroleptic) ruthenium(II) complexes is reported. Using this method, which is based on photosubstitution of carbonyl ligands in precursors such as [Ru(bpy)(CO)(2)Cl(2)] and [Ru(bpy)(Me(2)bpy)(CO)(2)](PF(6))(2), mononuclear and dinuclear Ru(II) tris(heteroleptic) polypyridyl complexes containing the bridging ligands 3,5-bis(pyridin-2-yl)-1,2,4-triazole (Hbpt) and 3,5-bis(pyrazin-2-yl)-1,2,4-triazole (Hbpzt) have been prepared. The complexes obtained were purified by column chromatography and characterized by HPLC, mass spectrometry, 1H NMR, absorption and emission spectroscopy and by electrochemical methods. The X-ray structures of the compounds [Ru(bpy)(Me(2)bpy)(bpt)](PF(6))x0.5C(4)H(10)O [1x0.5C(4)H(10)O], [Ru(bpy)(Me(2)bpy)(bpzt)](PF(6))xH(2)O (2xH(2)O) and [Ru(bpy)(Me(2)bpy)(CH(3)CN)(2)](PF(6))(2)xC(4)H(10)O (6xC(4)H(10)O) are reported. The synthesis and characterisation of the dinuclear analogues of 1 and 2, [{Ru(bpy)(Me(2)bpy)}(2)bpt](PF(6))(3)x2H(2)O (3) and [{Ru(bpy)(Me(2)bpy)}(2)bpzt](PF(6))(3) (4), are also described.  相似文献   

8.
Five platinum(II) 1,4,7-trithiacyclononane (ttcn) complexes with bidentate-substituted 2,2'-bipyridine ligands have been prepared and structurally characterized: [Pt(bpy)(ttcn)](PF6)2 (bpy = 2,2'-bipyridine), triclinic, P1, a = 10.2529(3) A, b = 10.7791(3) A, c = 10.7867(3) A, alpha = 83.886(1) degrees, beta = 87.565(1) degrees, gamma = 84.901(1), V = 1179.99(6) A3, Z = 2; [Pt(4,4'-dmbpy)(ttcn)](PF6)2 x CH3CN x H2O (4,4'-dmbpy = 4,4'-dimethyl-2,2'-bipyridine), triclinic, P1, a = 10.1895(3) A, b = 11.8566(4) A, c = 13.1004(4) A, alpha = 77.345(1) degrees, beta = 79.967(1) degrees, gamma = 72.341(1) degrees, V = 1461.56(8) A3, Z = 2; [Pt(5,5'-dmbpy)(ttcn)](PF6)2 (5,5'-dmbpy = 5,5'-dimethyl-2,2'-bipyridine), triclinic, P1, a = 10.6397(4) A, b = 10.8449(4) A, c = 11.2621(4) A, alpha = 90.035(1) degrees, beta = 98.061(1) degrees, gamma = 91.283(1) degrees, V = 1286.32(8) A3, Z = 2; [Pt(dbbpy)(ttcn)](PF6)2 x CH3NO2 (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine), triclinic, P1, a = 11.5422(7) A, b = 11.6100(7) A, c = 13.6052(9) A, alpha = 85.902(1) degrees, beta = 89.675(1) degrees, gamma = 74.942(1) degrees, V = 1755.90(19) A3, Z = 2; and [Pt(dtfmbpy)(ttcn)](PF6)2 x CH3CN (dtfmbpy = 5,5'-di-trifluoromethyl-2,2'-bipyridine): monoclinic, P2(1)/c, a = 13.1187(9) A, b = 20.9031(15) A, c = 11.3815(8) A, beta = 105.789(2) degrees, V = 3003.3(4) A3, Z = 4. For each salt, the platinum(II) center of the cation is bonded to two nitrogen atoms of the chelating diimine and two sulfur atoms of the thioether macrocycle. The third sulfur atom of ttcn forms a long apical interaction with the metal center (2.84-2.97 A), resulting in a flattened square pyramid structure. An examination of these and 17 other structures of platinum(II) ttcn complexes reveals a correlation between the apical Pt...S distance and the donor properties of the ancillary ligands, suggesting a means for using variations in ligand electronic properties to tune molecular structure. The room-temperature absorption spectra in acetonitrile solution show a broad and comparatively low-energy MLCT band maximizing near approximately 390 nm for the bpy and dialkyl-substituted bipyridyl derivatives. The maximum is dramatically red-shifted to 460 nm in the spectrum of the dtfmbpy complex as a result of the electron-withdrawing properties of the -CF(3) groups. The 3:1 EtOH/MeOH 77 K glassy solution emission spectra exhibit low-energy emission bands (lambdamax, 570-645 nm), tentatively assigned as originating from a lowest, predominantly spin-forbidden MLCT excited state that is stabilized by apical Pt...S interactions.  相似文献   

9.
Ruthenium(II) and palladium(II) complexes [Ru(DMSO)(L)Cl2] and [Pd(L)Cl]Cl, where L = 2,6-bis(pyrazol-1-yl)pyridine (bpp) or 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (bdmpp) have been synthesized. All complexes were characterized by elemental analysis, IR, 1H NMR, UV-Vis, and cyclic voltammetry measurements.  相似文献   

10.
Supramolecular bimetallic Ru(II)/Pt(II) complexes [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) and their synthons [(tpy)Ru(L)(BL)](n)()(+) (where L = Cl(-), CH(3)CN, or PEt(2)Ph; tpy = 2,2':6',2'-terpyridine; and BL = 2,2'-bipyrimidine (bpm) or 2,3-bis(2-pyridyl)pyrazine (dpp)) have been synthesized and studied by cyclic voltammetry, electronic absorption spectroscopy, mass spectral analysis, and (31)P NMR. The mixed-metal bimetallic complexes couple phosphine-containing Ru chromophores to a reactive Pt site. These complexes show how substitution of the monodentate ligand on the [(tpy)RuCl(BL)](+) synthons can tune the properties of these light absorbers (LA) and incorporate a (31)P NMR tag by addition of the PEt(2)Ph ligand. The redox potentials for the Ru(III/II) couples occur at values greater than 1.00 V versus the Ag/AgCl reference electrode and can be tuned to more positive potentials on going from Cl(-) to CH(3)CN or PEt(2)Ph (E(1/2) = 1.01, 1.55, and 1.56 V, respectively, for BL = bpm). The BL(0/-) couple at -1.03 (bpm) and -1.05 V (dpp) for [(tpy)Ru(PEt(2)Ph)(BL)](2+) shifts dramatically to more positive potentials upon the addition of the PtCl(2) moiety to -0.34 (bpm) and -0.50 V (dpp) for the [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) bridged complex. The lowest energy electronic absorption for these complexes is assigned as the Ru(d pi) --> BL(pi*) metal-to-ligand charge transfer (MLCT) transition. These MLCT transitions are tuned to higher energy in the monometallic synthons when Cl(-) is replaced by CH(3)CN or PEt(2)Ph (516, 452, and 450 nm, for BL = bpm, respectively) and to lower energy when Pt(II)Cl(2) is coordinated to the bridging ligand (560 and 506 nm for BL = bpm or dpp). This MLCT state displays a broad emission at room temperature for all the dpp systems with the [(tpy)Ru(PEt(2)Ph)(dpp)PtCl(2)](2+) system exhibiting an emission centered at 750 nm with a lifetime of 56 ns. These supramolecular complexes [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) represent the covalent linkage of TAG-LA-BL-RM assembly (TAG = NMR active tag, RM = Pt(II) reactive metal).  相似文献   

11.
The synthesis of new dinuclear manganese(IV) complexes possessing the [Mn(IV)(2)(mu-O)(2)(mu-O(2)CMe)](3+) core and containing halide ions as terminal ligands is reported. [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](2)[MnCl(4)] (1; bpy = 2,2'-bipyridine) was prepared by sequential addition of [MnCl(3)(bpy)(H(2)O)] and (NBzEt(3))(2)[MnCl(4)] to a CH(2)Cl(2) solution of [Mn(3)O(4)(O(2)CMe)(4)(bpy)(2)]. The complex [Mn(IV)(2)O(2)(O(2)CMe)Cl(bpy)(2)(H(2)O)](NO(3))(2) (2) was obtained from a water/acetic acid solution of MnCl(2).4H(2)O, bpy, and (NH(4))(2)[Ce(NO(3))(6)], whereas the [Mn(IV)(2)O(2)(O(2)CR)X(bpy)(2)(H(2)O)](ClO(4))(2) [X = Cl(-) and R = Me (3), Et (5), or C(2)H(4)Cl (6); and X = F(-), R = Me (4)] were prepared by a slightly modified procedure that includes the addition of HClO(4). For the preparation of 4, MnF(2) was employed instead of MnCl(2).4H(2)O. [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](2)[MnCl(4)].2CH(2)Cl(2) (1.2CH(2)Cl(2)) crystallizes in the monoclinic space group C2/c with a = 21.756(2) A, b = 12.0587(7) A, c = 26.192(2) A, alpha = 90 degrees, beta = 111.443(2) degrees, gamma = 90 degrees, V = 6395.8(6) A(3), and Z = 4. [Mn(2)O(2)(O(2)CMe)Cl(H(2)O)(bpy)(2)](NO(3))(2).H(2)O (2.H(2)O) crystallizes in the triclinic space group Ponemacr; with a = 11.907(2) A, b = 12.376(2) A, c = 10.986(2) A, alpha = 108.24(1) degrees, beta = 105.85(2) degrees, gamma = 106.57(1) degrees, V = 1351.98(2) A(3), and Z = 2. [Mn(2)O(2)(O(2)CMe)Cl(H(2)O)(bpy)(2)](ClO(4))(2).MeCN (3.MeCN) crystallizes in the triclinic space group Ponemacr; with a = 11.7817(7) A, b = 12.2400(7) A, c = 13.1672(7) A, alpha = 65.537(2) degrees, beta = 67.407(2) degrees, gamma = 88.638(2) degrees, V = 1574.9(2) A(3), and Z = 2. The cyclic voltammogram (CV) of 1 exhibits two processes, an irreversible oxidation of the [MnCl(4)](2)(-) at E(1/2) approximately 0.69 V vs ferrocene and a reversible reduction at E(1/2) = 0.30 V assigned to the [Mn(2)O(2)(O(2)CMe)Cl(2)(bpy)(2)](+/0) couple (2Mn(IV) to Mn(IV)Mn(III)). In contrast, the CVs of 2 and 3 show only irreversible reduction features. Solid-state magnetic susceptibility (chi(M)) data were collected for complexes 1.1.5H(2)O, 2.H(2)O, and 3.H(2)O in the temperature range 2.00-300 K. The resulting data were fit to the theoretical chi(M)T vs T expression for a Mn(IV)(2) complex derived by use of the isotropic Heisenberg spin Hamiltonian (H = -2JS(1)S(2)) and the Van Vleck equation. The obtained fit parameters were (in the format J/g) -45.0(4) cm(-)(1)/2.00(2), -36.6(4) cm(-)(1)/1.97(1), and -39.3(4) cm(-)(1)/1.92(1), respectively, where J is the exchange interaction parameter between the two Mn(IV) ions. Thus, all three complexes are antiferromagnetically coupled.  相似文献   

12.
The reaction of the imido precursor [V(NAr)Cl(2)](n)() (1) (Ar = 2,6-i-Pr(2)C(6)H(3)) with 3 equiv of PMe(2)Ph yields the monomeric complex [V(=NAr)Cl(2)(PMe(2)Ph)(2)] (2). Reacting 1 with 1.5 equiv of dmpe or 1 equiv of dppm affords the dimeric complexes [V(=NAr)Cl(2)(dmpe)](2)(mu-P,P'-dmpe) (3) and [V(=NAr)Cl(2)(dppm)](2) (4), respectively. Complexes 2-4 have been fully characterized by spectroscopic methods, magnetism studies, and X-ray crystallography.  相似文献   

13.
As starting materials for heterobimetallic complexes, [RuCp(PPh(3))CO(PPh(2)H)]PF(6) and [RuCp(PPh(3))CO(eta(1)-dppm)]PF(6) were prepared from RuCp(PPh(3))(CO)Cl. In the course of preparing [RuCp(eta(2)-dppm)(eta(1)-dppm)]Cl from RuCp(Ph(3)P)(eta(1)-dppm)Cl, the new monomer RuCpCl(eta(1)-dppm)(2) was isolated. The uncommon coordination mode of the two monodentate bis(phosphines) was confirmed by X-ray crystallography [a = 11.490(1) ?, b = 14.869(2) ?, c = 15.447(2) ?, alpha = 84.63(1) degrees, beta = 70.55(1) degrees, gamma = 72.92(1) degrees, V = 2378.7(5) ?(3), d(calc) = 1.355 g cm(-)(3) (298 K), triclinic, P&onemacr;, Z = 2]. The dppm-bridged bimetallic complexes RuCp(PPh(3))Cl(&mgr;-dppm)PtCl(2), RuCpCl(&mgr;-dppm)(2)PtCl(2), and [RuCp(PPh(3))CO(&mgr;-dppm)PtCl(2)]PF(6) each exhibit electrochemistry consistent with varying degrees of metal-metal interaction. The cationic heterobimetallic complexes [Mo(CO)(3)(&mgr;-dppm)(2)Pt(H)]PF(6) and [MoCp(CO)(2)(&mgr;-PPh(2))(&mgr;-H)Pt(PPh(3))(MeCN)]PF(6) were prepared by chloride abstraction from the corresponding neutral bimetallic species and show electrochemical behavior similar to the analogous Ru/Pt complexes.  相似文献   

14.
The oxidations of benzyl alcohol, PPh3, and the sulfides (SEt2 and SPh2) (Ph = phenyl and Et = ethyl) by the Os(VI)-hydrazido complex trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) (tpy = 2,2':6',2' '-terpyridine and O(CH2)4N(-) = morpholide) have been investigated in CH3CN solution by UV-visible monitoring and product analysis by gas chromatography-mass spectrometry. For benzyl alcohol and the sulfides, the rate law for the formation of the Os(V)-hydrazido complex, trans-[Os(V)(tpy)(Cl)2(NN(CH2)4O)](+), is first order in both trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) and reductant, with k(benzyl) (25.0 +/- 0.1 degrees C, CH3CN) = (1.80 +/- 0.07) x 10(-4) M(-1) s(-1), k(SEt2) = (1.33 +/- 0.02) x 10(-1) M(-1) s(-1), and k(SPh2) = (1.12 +/- 0.05) x 10(-1) M(-1) s(-1). Reduction of trans-[Os(VI)(tpy)(Cl)2(NN(CH2)4O)](2+) by PPh3 is rapid and accompanied by isomerization and solvolysis to give the Os(IV)-hydrazido product, cis-[Os(IV)(tpy)(NCCH3)2(NN(CH2)4O)](2+), and OPPh3. This reaction presumably occurs by net double Cl-atom transfer to PPh3 to give Cl2PPh3 that subsequently undergoes hydrolysis by trace H2O to give the final product, OPPh3. In the X-ray crystal structure of the Os(IV)-hydrazido complex, the Os-N-N angle of 130.9(5) degrees and the Os-N bond length of 1.971(7) A are consistent with an Os-N double bond.  相似文献   

15.
A series of L(2) = diimine (Bian = bis(3,5-diisopropylphenylimino)acenapthene, Bu(t)(2)bpy = 4,4'-di-tert-butyl-2,2'-bipyridine) supported aqua, hydroxo, oxo, amido, imido, and mixed complexes have been prepared. Deprotonation of [L(2)Pt(mu-OH)](2)(2+) with 1,8-bis(dimethylamino)naphthalene, NaH, or KOH yields [(L(2)Pt)(2)(mu-OH)(mu-O)](+) as purple (Bian) or red (Bu(t)(2)bpy) solids. Excess KOH gives dark blue [(Bian)Pt(mu-O)](2). MeOTf addition to [(Bu(t)(2)bpy)(2)Pt(2)(mu-OH)(mu-O)](+) gives [(Bu(t)(2)bpy)(2)Pt(2)(mu-OH)(mu-OMe)](2+) while [(Bian)Pt(mu-O)](2) yields [(Bian)(2)Pt(2)(mu-OMe)(mu-O)](+). Treatment of [(Bian)Pt(mu-O)](2) with "(Ph(3)P)Au(+)" gives deep purple [(Bian)(2)Pt(2)(mu-O)(mu-OAuPPh(3))](+) while (COD)Pt(OTf)(2) gives a low yield of [(Bian)Pt(3)(mu-OH)(3)(COD)(2)](OTf)(3). Ni(Bu(t)(2)bpy)Cl(2) and [(Ph(3)PAu)(3)(mu-O)](+) in a 3 : 2 ratio yield red [Ni(3)(Bu(t)(2)bpy)(3)(mu-O)(2)](2+). M(Bu(t)(2)bpy)Cl(2) (M = Pd, Pt) and [(Ph(3)PAu)(3)(mu-O)](+) give [M(Bu(t)(2)bpy)(mu-OAuPPh(3))](2)(2+) and [Pd(4)(Bu(t)(2)bpy)(4)(mu-OAuPPh(3))](3+). Addition of ArNH(2) to [M(Bu(t)(2)bpy)(mu-OH)](2)(2+) (M = Pd, Pt) gives [Pt(2)(Bu(t)(2)bpy)(2)(mu-NHAr)(mu-OH)](2+) (Ar = Ph, 4-tol, 4-C(6)H(4)NO(2)) and [M(Bu(t)(2)bpy)(mu-NHAr)](2)(2+) (Ar = Ph, tol). Deprotonation of [Pt(2)(Bu(t)(2)bpy)(2)(mu-NH-tol)(mu-OH)](2+) with 1,8-bis(dimethylamino)naphthalene or NaH gives [Pt(2)(Bu(t)(2)bpy)(2)(mu-NH-tol)(mu-O)](+). Deprotonation of [Pt(Bu(t)(2)bpy)(mu-NH-tol)](2)(2+) with KOBu(t) gives deep green [Pt(Bu(t)(2)bpy)(mu-N-tol)](2). The triflate complexes M(Bu(t)(2)bpy)(OTf)(2) (M = Pd, Pt) are obtained from M(Bu(t)(2)bpy)Cl(2) and AgOTf. Treatment of Pt(Bu(t)(2)bpy)(OTf)(2) with water gives the aqua complex [Pt(Bu(t)(2)bpy)(H(2)O)(2)](OTf)(2).  相似文献   

16.
A family of hexa-coordinated ruthenium(II) complexes of bis(N-pyridylimidazolylidenyl)methane (L) were prepared and structurally characterized. Carbene transfer reactions of [Ru(p-cymene)Cl(2)](2), [Ru(CO)(2)Cl(2)](n) and RuHCl(CO)(PPh(3))(3) with silver-NHC complexes in situ generated from [H(2)L](PF(6))(2) and Ag(2)O afforded [RuL(CH(3)CN)(2)](PF(6))(2) (1), [Ru(2)L(p-cymene)(2)Cl(2)](PF(6))(2) (2), [RuL(CO)(2)](PF(6))(2) (3) and [RuL(PPh(3))(2)](PF(6))(2) (4), respectively. The reactions of 1 towards several N- and P-donors were studied. The treatment of 1 with 1,10-phenanthroline resulted in the substitution of one pyridine and one acetonitrile molecule affording [RuL(phen)(CH(3)CN)](PF(6))(2) (5) as a mixture of two isomers. Reaction of 1,2-bis(diphenylphosphino)ethane (dppe) and 1 gave [RuL(dppe)(CH(3)CN)(2)](PF(6))(2) (7), in which two pyridines were substituted by a dppe ligand trans to two NHC groups. In contrast, reactions of 1 with ethane-1,2-diamine, propane-1,3-diamine and 3,5-dimethyl-1H-pyrazole led to the substitution of acetonitrile and subsequent N-H addition of the C≡N bond of the coordinated acetonitrile yielding [RuL(ethane-1,2-diamine)(N-(2-aminoethyl)acetimidamide)](PF(6))(2) (8), [RuL(propane-1,3-diamine)(N-(3-aminopropyl)acetimidamide)](PF(6))(2) (9) and RuL(1-(3,5-dimethyl-1H-pyrazol-1-yl)ethanimine)(CH(3)CN)](PF(6))(2) (10), respectively.  相似文献   

17.
Reactions of the linear triplatinum complex [Pt(3)(&mgr;-dpmp)(2)(XylNC)(2)](2+) (3) with small organic molecules led to formation of asymmetrical A-frame triplatinum complexes with an additional bridge across one of the metal-metal bonds, where dpmp is bis((diphenylphosphino)methyl)phenylphosphine. Reaction of complex 3 with electron deficient alkynes (R(1)C&tbd1;CR(2): R(1) = R(2) = CO(2)Me; R(1) = H, R(2) = CO(2)Me; R(1) = R(2) = CO(2)Et) afforded a new series of triplatinum clusters formulated as [Pt(3)(&mgr;-dpmp)(2)(&mgr;-R(1)CCR(2))(XylNC)(2)](PF(6))(2) (5a, R(1) = R(2) = CO(2)Me; 5b, R(1) = H, R(2) = CO(2)Me; 5c, R(1) = R(2) = CO(2)Et) in good yields. The complex cation of 5b was characterized by X-ray crystallography to have an asymmetrical A-frame structure comprising three Pt atoms bridged by two dpmp ligands, in which an acetylene molecule was inserted into one of the Pt-Pt bonds (triclinic, P&onemacr;, a = 19.507(3) ?, b = 20.327(4) ?, c = 14.499(4) ?, alpha = 107.69(2) degrees, beta = 102.08(2) degrees, gamma = 71.30(1) degrees, V = 5148 ?(3), Z = 2, R = 0.070, and R(w) = 0.084). The Pt-Pt bond length is 2.718(1) ? and the Pt.Pt nonbonded distance is 3.582(1) ?. Treatment of 3 with an excess of HBF(4).Et(2)O gave the asymmetrical cluster [Pt(3)(&mgr;-dpmp)(2)(&mgr;-H)(XylNC)(2)](BF(4))(3).CH(2)Cl(2) (6.CH(2)Cl(2)), in 61% yield, and a similar reaction with p-NO(2)C(6)H(4)NC led to the formation of [Pt(3)(&mgr;-dpmp)(2)(&mgr;-R(3)NC)(XylNC)(2)](PF(6))(2).CH(2)Cl(2) (7.CH(2)Cl(2)) in 94% yield (R(3) = p-NO(2)C(6)H(4)). Complexes 6 and 7 are assumed to have a single atom-bridged, asymmetrical A-frame structures. Reaction of the complex syn-[Pt(2)(&mgr;-dpmp)(2)(XylNC)(2)](2+) (1) with [MCl(2)(cod)] (M = Pt, Pd) gave the dimer-monomer combined trinuclear cluster [Pt(2)MCl(2)(&mgr;-dpmp)(2)(XylNC)(2)](PF(6))(2) (8a, M = Pt, 89%; 8b, M = Pd, 55%). The structure of 8a was determined by X-ray crystallography to be comprised of a metal-metal-bonded diplatinum core and a monomeric platinum center bridged by two dpmp ligands with a face-to-face arrangement (triclinic, P&onemacr;, a = 18.082(7) ?, b = 19.765(6) ?, c = 15.662(4) ?, alpha = 98.51(2) degrees, beta = 94.24(3) degrees, gamma = 109.82(2) degrees, V = 5161 ?(3), Z = 2, R = 0.069, and R(w) = 0.080). The Pt-Pt bond length is 2.681(2) ? and the Pt.Pt nonbonded distance is 3.219(2) ?. The heteronuclear complex 8b was transformed to an A-frame trinuclear cluster, [Pt(2)PdCl(&mgr;-Cl)(&mgr;-dpmp)(2)(XylNC)](PF(6))(2) (9), which was characterized by X-ray crystallography (monoclinic, C2/c, a = 33.750(9) ?, b = 28.289(9) ?, c = 23.845(8) ?, beta = 118.19(4) degrees, V = 20066 ?(3), Z = 8, R = 0.082, and R(w) = 0.077). The diplatinum unit (Pt-Pt = 2.606(2) ?) is connected to the mononuclear Pd center by a chloride bridge (Pt.Pd = 3.103(3) ?, Pt-Cl-Pd = 79.6(3) degrees ).  相似文献   

18.
The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) (bpy = 2,2'-bipyridine) in H(2)O at room temperature proceeded to afford two new nitrosylruthenium complexes. These complexes have been identified as nitrosylruthenium complexes containing the N-bound methylcarboxyimidato ligand, cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+), and methylcarboxyimido acid ligand, cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+), formed by an electrophilic reaction at the nitrile carbon of the acetonitrile coordinated to the ruthenium ion. The X-ray structure analysis on a single crystal obtained from CH(3)CN-H(2)O solution of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](PF(6))(3) has been performed: C(22)H(20.5)N(6)O(2)P(2.5)F(15)Ru, orthorhombic, Pccn, a = 15.966(1) A, b = 31.839(1) A, c = 11.707(1) A, V = 5950.8(4) A(3), and Z = 8. The structural results revealed that the single crystal consisted of 1:1 mixture of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+) and cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+) and the structural formula of this single crystal was thus [Ru(NO)(NH=C(OH(0.5))CH(3))(bpy)(2)](PF(6))(2.5). The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) in dry CH(3)OH-CH(3)CN at room temperature afforded a nitrosylruthenium complex containing the methyl methylcarboxyimidate ligand, cis-[Ru(NO)(NH=C(OCH(3))CH(3))(bpy)(2)](3+). The structure has been determined by X-ray structure analysis: C(25)H(29)N(8)O(18)Cl(3)Ru, monoclinic, P2(1)/c, a = 13.129(1) A, b = 17.053(1) A, c = 15.711(1) A, beta = 90.876(5) degrees, V = 3517.3(4) A(3), and Z = 4.  相似文献   

19.
Liaw BJ  Lobana TS  Lin YW  Wang JC  Liu CW 《Inorganic chemistry》2005,44(26):9921-9929
Reactions of [Cu(CH(3)CN)(4)]X (X = PF(6), BF(4)) with bis(diphenylphosphino)methane (dppm = Ph(2)PCH(2)PPh(2)) and ammonium dialkyldithiophosphates, (NH(4))[S(2)P(OR)(2)] (R = Et, (i)Pr), yield a series of novel Cu(I) polynuclear complexes, trinuclear [Cu(3)(mu-dppm)(3)(mu(3)-Cl){S(2)P(OEt)(2)}] (PF(6)) 1 and [Cu(3)(mu-dppm)(2){S(2)P(OR)(2)}(2)](PF(6)) (R = Et, 2; (i)Pr, 3), tetranuclear [Cu(4)(mu-dppm)(2) {S(2)P(OEt)(2)}(4)] 4, and hexanuclear [Cu(6)(mu-dppm)(2)(mu(4)-Cl){S(2)P(O(i)()Pr)(2)}(4)](BF(4)) 5. Similarly, the reaction of [Cu(2)(mu-L-L)(2)(CH(3)CN)(2)](PF(6))(2) (L-L, dppm, dppe = Ph(2)PCH(2)CH(2)PPh(2)) with (NH(4))[S(2)P(OR)(2)] yields dinuclear [Cu(2)(mu-dppm)(2){S(2)P(OR)(2)}(2)] 6 (R= (i)Pr, 6A; Et, 6B), trinuclear [Cu(3)(mu-dppe)(3)(mu-Cl)(2){S(2)P(O(i)Pr)(2)}] 9, and polymeric [Cu(mu(2)-dppe){S(2)P(OR)(2)}](n) (R = Et, 7; (i)Pr, 8) complexes. The formation of 1 and 5 involved the abstraction of chloride from dichloromethane when the Cu/S(2)P(OR)(2) ratio exceeded 1, but when ratio was 1:1, no Cl abstraction occurred, as in compound 4. Compound 9, however, was obtained as a 12% byproduct in the synthesis of 8 using a 1:1:1 ratio of Cu/dppe/S(2)P(O(i)Pr)(2). The chloride binds to Cu atoms in a mu(3)-Cl mode by capping one face of the Cu(3) triangle of cluster 1. A mu(4)-Cl caps a single tetragonal face of the trigonal prism of cluster 5, and in the cluster 9, two chlorides bond in mu(2)-Cl modes. Both clusters 2 and 3 exhibit the mu(3)-S mode of bonding for dtp ligands. Only cluster 5 exhibited close Cu...Cu contacts (2.997-3.0238 A). All of compounds were characterized by single-crystal X-ray diffraction and pertinent crystallographic data for 1, 5, and 9 are are follows: (1) C(79)H(76)ClCu(3)F(6)O(2)P(8)S(2), triclinic, P, a = 11.213(1) A, b = 14.142(1) A, c = 25.910(2) A, alpha = 95.328(2) degrees , beta = 99.594(2) degrees , gamma = 102.581(2) degrees , V = 3918.2(6) A(3), Z = 2; (5) C(74)H(100)BClCu(6)F(4)O(8)P(8)S(8), monoclinic, P2(1)/n, a = 25.198(4) A, b = 15.990(3) A, c = 25.421(4) A, beta = 106.027(3) degrees , V = 9845(3)A(3), Z = 4; (9) C(84)H(86)Cl(2)Cu(3)O(2)P(7)S(2), monoclinic, C2/c, with a = 24.965(3) A, b = 17.058(2) A, c = 20.253(2) A, beta = 95.351(4) degrees , V = 8587.4(17)A(3), Z = 4.  相似文献   

20.
A new terpyridyl-containing Pt triad [Pt(pytpy)(p-CC-C6H4-NH-CO-C6H2(OMe)3)](PF6)2 (4), where pytpy = 4'-(4-pyridin-1-ylmethylphenyl)-[2,2';6',2' ']terpyridine and p-CC-C6H4-NH-CO-C6H2(OMe)3 = N-(4-ethynylphenyl)-3,4,5-trimethoxybenzamide, has been synthesized and structurally characterized. The related donor-chromophore dyad [Pt(ttpy)(p-CC-C6H4-NH-CO-C6H2(OMe)3)]PF6 2, where ttpy = 4'-p-tolyl-[2,2';6',2' ']terpyridine, and the chromophore-acceptor dyad [Pt(pytpy)(CCC6H5)](PF6)2 (3), where CCC6H5 = ethynylbenzene, have also been studied. The multistep syntheses culminate with a CuI-catalyzed coupling reaction of the respective acetylene with either [Pt(ttpy)Cl]PF6 or [Pt(pytpy)Cl](PF6)2. X-ray and spectroscopic studies support assignment of a distorted square planar environment around the Pt(II) ion with three of its coordination sites occupied by the terpyridyl N-donors and the fourth coordination site occupied by the acetylenic carbon. Although the parent compound [Pt(ttpy)(CCC6H5)]PF6 (1) is brightly luminescent in fluid solution at 298 K, dyad 2 as well as triad 4 exhibit complete quenching of the emission. The chromophore-acceptor (C-A) dyad 3 displays weak solution luminescence at room temperature with a phi(rel)(em) of 0.011 (using Ru(bpy)3(2+) as a standard with phi(rel)(em) = 0.062). Electrochemically, the donor-chromophore (D-C) dyad and the donor-chromophore-acceptor (D-C-A) triad exhibit both metal-based and donor ligand-based oxidations, whereas the triad and the C-A dyad show the expected pyridinium- and terpyridine-based reductions. Transient absorption studies of the dyad and triad systems indicate that although the trimethoxybenzene group acts as a reductive donor, in the present system, the pyridinium group fails to act as an acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号