首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ruthenium(II)-Phthalocyaninates(1–): Synthesis and Properties of (Halo)(carbonyl)phthalocyaninato(1–)ruthenium(II) Brown-violet (halo)(carbonyl)phthalocyaninato(1–)ruthenium(II), [Ru(X)(CO)Pc?] (X = Cl, Br) is prepared by oxidation of [Ru(X)(CO)Pc2?]? with the corresponding halogen or dibenzoylperoxide. The eff. magnetic moment μeff = 1.74 (X = Cl), 1.68 μB (Br) confirms the presence of a low-spin RuII complex of the Pc? radical. Accordingly, only the first ring oxidation at ~0.64 V and the first ring reduction at ~ ?1.19 V is observed in the cyclovoltammogram of [Ru(X)(CO)Pc2?]?. The UV-VIS-NIR spectra characterizing a monomeric Pc? radical with intense π-π* transitions at 14500, 19800, 25100 and 33900 cm?1 are compared with those of [Ru(Cl)2Pc?] and of monomeric as well as dimeric [Zn(Cl)Pc?]. The IR and resonance Raman(RR) spectra are characteristic for a Pc? radical, too. Diagnostic in-plane vibrations of the Pc? ligand are in the IR spectrum at 1071, 1359, 1445 cm?1 and in the RR spectrum (λ0 = 488.0 nm) at 567, 1597 cm?1. v(C? O) at 1950 cm?1 and v(Ru? X) at 260 (X = Cl) resp. 184 cm?1 (X = Br) are observed only in the IR spectrum.  相似文献   

2.
Preparation and Properties of Tetragonal α-Di(phthalocyaninato(1?))praseodymium(III)-polyhalides; Crystal Structure of α-[Pr(Pc?)2]Br1.5 Brown red di(phthalocyaninato(1?))-praseodym(III)-polyhalides [Pr(Pc?)2]Xy (X = Br, I) of variable composition (1 ≤ y ≤ 2.5) are formed by (electro)chemical oxidation of [Pr(Pc2?)2]?. The thermical decomposition of these polyhalides at 250°C yields partially oxidized, green α-[PrPc?Pc2?]. Due to strong spin–spin coupling of the phthalocyanin-π-radicals only PrIII contributes to the magnetic moment of ca. 3.0 B.M. for all complexes. Green metallic prisms of [Pr(Pc?)2]Br1.5 crystallize in the tetragonal α-modification: space group P4/nnc with a = 19.634(5) Å, c = 6.485(2) Å; Z = 2. In the sandwich complex PrIII is eightfold coordinated by the isoindoline N-atoms of the two staggered (41°), nearly planar Pc?- ligands. The quasi-onedimensional character of the structure along [001] is due to the infinite columns of Pc? ligands. The superperiod along [001] is a consequence of the distribution of the Pr atoms onto two incompletely filled crystallographic positions at a distance of c/2 and the disordered chains of the bromine atoms extending in the same direction. Powder diffractograms of Pr(Pc )2Br2, [Pr(Pc?)2]I2 und [PrPc Pc2?] confirm the tetragonal α-modification of these complexes, too. The content of tribromide correlates with the population of the Pr(2)-site. In the UV-VIS-NTR absorption spectrum of a thin film of Pr(Pc )2Br, the intense bands at 13.9 and 19.5 kK are assigned to the B and Q transition, respectively. The D band at 9. kK is characteristic for isolated dimeric Pc?-π-radicals. Due to increasing electron delocalisation as a result of the growing columns the D band is shifted to lower energy appearing successively at 6.05 and 3.3 kK. The mir and resonance Raman (RR) spectra of α-[Pr(Pr?)2]Xy, (X = Br, I) show the well known diagnostic bands for Pc?-π-radicals. Thc RR spectrum of the polyiodide is dominated by the overtone progression of the totally symmetric (I-I) stretching vibration of the triiodide at 108cm?1. The FT-Raman spectra are also marked by the totally symmetric stretching vibration of the polyhalides (Br3 : 145cm 1; 13?:105cm?1; I5? 151 cm?1).  相似文献   

3.
Synthesis and Spectroscopical Characterization of Di(halo)phthalocyaninato(1–)rhodium(III), [RhX2Pc1?] (X = Cl, Br, I) Bronze-coloured di(halo)phthalocyaninato(1–)-rhodium(III), [RhX2Pc1?] (X = Cl, Br) and [RhI2Pc1?] · I2 is prepared by oxidation of (nBu4N)[RhX2Pc2?] with the corresponding halogene. Irrespective of the halo ligands, two irreversible electrode reactions due to the first ringreduction (ER = ?0,90 V) and ringoxidation (EO = 0,82 V) are present in the cyclovoltammogram of (nBu4N)[RhX2Pc2?]. The optical spectra show typical absorptions of the Pc1?-ligand at 14.0 kK and 19.1 kK. Characteristic vibrational bands are at 1 366/1 449 cm?1 (i. r.) and 569/1 132/1 180/1 600 cm?1 (resonance Raman (r. r.)). The antisym. (Rh? X)-stretching vibration is observed at 294 cm?1 (X = Cl), 240 cm?4 (Br) and 200 cm?1 (I). Only the sym. (Rh? I)-stretching vibration at 133 cm?1 is r. r. enhanced together with a strong line at 170 cm?1, which is assigned to the (I? I)-stretching vibration of the incorporated iodine molecule. Both modes show overtones and combinationbands.  相似文献   

4.
The gas-phase elimination of several polar substituents at the α carbon of ethyl acetates has been studied in a static system over the temperature range of 310–410°C and the pressure range of 39–313 torr. These reactions are homogeneous in both clean and seasoned vessels, follow a first-order rate law, and are unimolecular. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: 2-acetoxypropionitrile, log k1 (s?1) = (12.88 ± 0.29) – (203.3 ± 2.6) kJ/mol (2.303RT)?1; for 3-acetoxy-2-butanone, log ±1(s?1) = (13.40 ± 0.20) – (202.8 ± 2.4) kJ/mol (2.303RT)?1; for 1,1,1-trichloro-2-acetoxypropane, log ?1 (s?1) = (12.12 ± 0.50) – (193.7 ± 6.0) kJ/mol (2.303RT)?; for methyl 2-acetoxypropionate, log ?1 (s?1) = (13.45 ± 0.05) – (209.5 ± 0.5) kJ/mol (2.303RT)?1; for 1-chloro-2-acetoxypropane, log ?1 (s?1) = (12.95 ± 0.15) – (197.5 ± 1.8) kJ/mol (2.303RT)?1; for 1-fluoro-2-acetoxypropane, log ?1 (s?1) = (12.83 ± 0.15)– (197.8 ± 1.8) kJ/mol (2.303RT)?1; for 1-dimethylamino-2-acetoxypropane, log ?1 (s?1) = (12.66 ± 0.22) –(185.9 ± 2.5) kJ/mol (2.303RT)?1; for 1-phenyl-2-acetoxypropane, log ?1 (s?1) = (12.53 ± 0.20) – (180.1 ± 2.3) kJ/mol (2.303RT)?1; and for 1-phenyl?3?acetoxybutane, log ?1 (s?1) = (12.33 ± 0.25) – (179.8 ± 2.9) kJ/mol (2.303RT)?1. The Cα? O bond polarization appears to be the rate-determining process in the transmition state of these pyrolysis reactions. Linear correlations of electron-releasing and electron-withdrawing groups along strong σ bonds have been projected and discussed. The present work may provide a general view on the effect of alkyl and polar substituents at the Cα? O bond in the gas-phase elimination of secondary acetates.  相似文献   

5.
Ruthenium(III) Phthalocyanines: Synthesis and Properties of Di(halo)phthalocyaninato(1?)ruthenium(III) Di(halo)phthalocyaninato(1?)ruthenium(III), [Ru(X)2Pc?] (X = Cl, Br, I) is prepared by oxidation of [Ru(X)2Pc2?]? (Cl, Br, OH) with halogene in dichloromethane. The magnetic moment of [Ru(X)2Pc?] is 2,48 μB (X = Cl) resp. 2,56 μB (X = Br) in accordance with a systeme of two independent spins (low spin RuIII and Pc?: S = 1/2). The optical spectra of the red violet solution of [Ru(X)2Pc?] (Cl, Br) are typical for the Pc? ligand with the “B” at 13.5 kK, “Q1” at 19.3 kK and “Q2 region” at 31.9 kK. Sytematic spectral changes within the iron group are discussed. The presence of the Pc? ligand is confirmed by the vibrational spectra, too. Characteristic are the metal dependent bands in the m.i.r. spectra at 1 352 and 1 458 cm?1 and the strong Raman line at 1 600 cm?1. The antisymmetric Ru? X stretch (vas(Ru? X)) is observed at 189 cm?1 (X = I) resp. 234 cm?1 (X = Br). There are two interdependent bands at 295 and 327 cm?1 in the region expected for vas(Ru? Cl) attributed to strong interaction of vas(Ru? Cl) with an out-of-plane Pc? tilting mode of the same irreducible representation. Only the symmetric Ru? Br stretch at 183 cm?1 is selectively enhanced in the resonance-Raman(RR) spectra. The Raman line at 168 cm?1 of the diiodo complex is assigned to loosely bound iodine. The broad band at 978 cm?1 in the RR spectra of the dichloro complex is due to an intraconfigurational transition within the electronic ground state of low spin RuIII split by spin orbit coupling.  相似文献   

6.
The reactions D + H2 (v = 0, 1) → HD (v = 0, 1) + H have been studiedin a discharge flow reactor by CARS-spectroscopy. For H2(v = 0) molecules a rate constant of (4, 0 ± 1, 0) 10?16 cm3 s?1 is obtained at 310 K from measured HD (v = 0, 1) product yields. Keeping the degree of vibrational excitation of H2in the microwave discharge in the range of 1% from the increase of the HD (v = 0, 1) CARS signals a rate of k2a, b = (1, 0 ± 0, 4) 10?13cm3 s?1 is derived. The total consumption of H2 (v = 1) in the presence of D atoms gives a rate k2 = (1, 9 ± 0, 2) 10?13 cm3 s?1 at 310 K. The resultsare discussed in regard to previous measurements and theoretical treatments.  相似文献   

7.
Fe(CN)4?6, Cu(CN)3?4, Co(CN)3?6, Fe(CN)3?6, Ni(CN)2?4 and Cr(CN)3?6 are determined by ion-interaction chromatography using a C18 column and methanol-tetrahydrofuran-10 mM phosphate buffer (pH 7.9) (25 + 1 + 74, v/v/v) containing 5 mM tetrabutylammonium hydroxide as mobile phase, with spectrophotometric detection at 214 nm. Detection limits are in the range 0.01–0.5 mg 1?1. In an alternative approach, an automated on-line sample preconcentration technique is used wherein a 2-ml volume of sample containing metallo-cyanides is loaded onto a C18 precolumn which has been equilibrated with the above mobile phase. The bound solutes are then eluted from the precolumn to a C18 analytical column where they are separated using the same mobile phase as employed to equilibrate the precolumn. Detection limits are in the rate 0.08–1.58 μg 1?1 and calibration graphs are linear up to 200 μg 1?1. The preconcentration step is shown to give quantitative recoveries for all species except Fe(CN)4?6 and (CN)3?4. The iron(II) complex does not bind quantitatively to the precolumn, and extensive studies with the copper complex suggested that low recoveries were due to dissociation and ligand-exchange reactions occurring during the chromatographic separation process. Negative interference effects were observed for Cl? and SO2?4 when present at a level of 250 mg 11?, and UV-absorbing anions such as Br?, SCN?, NO?2 and NO?3 caused positive interference when present at concentrations as low as 1 mg 1?1. The negative interferences could be reduced by diluting the sample and the positive interferences could be eliminated by incorporating an additional step in the preconcentration process, in which UV-absorbing anions bound to the precolumn after sample loading were eluted selectively using an eluent consisting of 10 mM NaCl in phosphate buffer (pH 6.7).  相似文献   

8.
We demonstrate a rational template carbonization method to produce nitrogen-containing nanoporous carbons at 800 °C, using 1, 10-phenanthroline (or benzimidazole) as carbon/nitrogen source and magnesium citrate as template. The mass ratio of 1, 10-phenanthroline (or benzimidazole) and magnesium citrate has exerted the vital role in the determination of pore structures and the resulting electrochemical performances. It reveals that the carbon-P:Mg-1:1 (obtained by heating 1, 10-phenanthroline and magnesium citrate at 800 °C with the mass ratio of 1:1) and carbon-B:Mg-1:1 (obtained by heating benzimidazole and magnesium citrate at 800 °C with the mass ratio of 1:1) samples both are amorphous, nitrogen-containing, and highly nanoporous in nature. The carbon-P:Mg-1:1 sample has a large BET surface area of 1,657.4 m2 g?1 and high pore volume of 1.83 cm3 g?1, and those of carbon-B:Mg-1:1 sample are of 1,105.4 m2 g?1 and 1.67 cm3 g?1, respectively. Based on a three-electrode system using a 6-mol L?1 KOH aqueous solution as electrolyte, the carbon-P:Mg-1:1 and carbon-B:Mg-1:1 samples can deliver large specific capacitances of 289.0 and 255.6 F g?1 at a current density of 0.5 A g?1. They can also exhibit high energy densities of 40.1 and 35.5 Wh kg?1 when designated the power density as 0.25 kW kg?1 as well as highly long-term cycling durabilities.  相似文献   

9.
A spectrophotometric method to determine palladium(II) at trace levels is based on the extraction of palladium(II) as a binary complex with N-hydroxy-N,N′-diphenylbenzamidine (HDPBA) in chloroform at pH 5.0 ± 0.2. The complex shows maximum absorbance at 400 nm with molar absorptivity 6.4 × 103 L mol?1 cm?1. The sensitivity of the Pd(II)-HDPBA complex was enhanced by the addition of l-(2-pyridylazo)-2-naphthol (PAN). The green coloured complex shows maximum absorbance at 620 nm with molar absorptivity 1.58 × 104 L mol?1 cm?1. Sandell's sensitivity and the detection limit of the method are 0.0067 μg cm?2and 0.1 μg Pd(II) mL?1, respectively. Most common metal ions associated with palladium metal do not interfere. The effects of various analytical parameters on the extraction of the metal are discussed.  相似文献   

10.
Azulene, which is isomeric with naphthalene, was studied to determine whether it behaves like a polycyclic aromatic hydrocarbon or an alkene in its gas-phase reactions with OH and NO3 radicals and O3. Using relative rate methods, rate constants for the reactions of azulene with OH and NO3 radicals and O3 of (2.73 ± 0.56) × 10?10 cm3 molecule?1 s?1, (3.9) × 10?10 cm3 molecule?1 s?1, and <7 × 10?17 cm3 molecule?1 s?1, respectively, were obtained at 298 ± 2 K. The observation that the NO3 radical reaction did not involve NO2 in the rate determining step indicates that azulene behaves more like an alkene than a polycyclic aromatic hydrocarbon in this reaction. No conclusive evidence for the formation of nitroazulene(s) from either the OH or NO3 radical-initiated reaction of azulene (in the presence of NOx) was obtained.  相似文献   

11.
The differential pulse polarographic behaviour of 2,4,6-trinitrophenyl (TNP) derivatives of several primary amines and amino acids was investigated in the presence of sulphite ion. All the derivatives produced a polarographic peak for their complexes with sulphite (1 × 10?2 M) in pH 8.0 phosphate buffer (0.05 M)/0.1 M potassium chloride. The derivatives of proteins and peptides did not give such a peak. A 5-min reaction time at room temperature (or 50°C for lysine) and pH 10.5 using 1 × 10?4 M 2,4,6-trinitrobenzene-1-sulphonic acid provides the optimal conditions for the determination of 5 × 10?6?2.5 × 10?5 M amines. The relative standard deviation for determining 1 × 10?5 M glycine (n = 5) was 1%.  相似文献   

12.
The mechanism of lithium ion intercalation/de-intercalation into LiNi1/3Mn1/3Co1/3O2 cathode material prepared by reactions under autogenic pressure at elevated temperatures method is investigated both in aqueous and non-aqueous electrolytes using electrochemical impedance spectroscopy (EIS) technique. In accordance with the results obtained an equivalent circuit is used to fit the impedance spectra. The kinetic parameters of intercalation/de-intercalation processes are evaluated with the help of the same equivalent circuit. The dependence of charge transfer resistance (R ct), exchange current (I 0), double layer capacitance (C dl), Warburg resistance (Z w), and chemical diffusion coefficient (D Li+) on potential during intercalation/de-intercalation is studied. The behavior of EIS spectra and its potential dependence is studied to get the kinetics of the mechanism of intercalation/de-intercalation processes, which cannot be obtained from the usual electrochemical studies like cyclic voltammetry. The results indicate that intercalation and de-intercalation of lithium ions in aqueous solution follows almost similar mechanism in non-aqueous system. D Li+ values are in the range of 10?8 to 10?14?cm2?s?1 in aqueous 5?M LiNO3 and that in non-aqueous 1?M LiAsF6/EC+DMC electrolyte is in the order of 10?12?cm2?s?1 during the intercalation/de-intercalation processes. A typical cell LiTi2 (PO4)3/5?M LiNO3/LiNi1/3Mn1/3Co1/3O2 is constructed and the cycling stability is compared to that with an organic electrolyte.  相似文献   

13.
Synthesis and Spectroscopical Properties of Di(phthalocyaninato(1?))lanthanidepolybromide; Crystal Structure of α-Di(phthalocyaninato)samariumpolybromide, α-[Sm(Pc)2]Br1.45 and α-Di(phthalocyaninato)samariumperchlorate, α-[Sm(Pc)2](ClO4)0.63 Bronze-coloured di(phthalocyaninato)lanthanidepolybromide, [Ln(Pc?)2]Bry (Ln = La…(? Ce, Pm)…Lu; y > 1.5) is prepared by oxidation of (nBu4N)[Ln(Pc2?)2] with bromine in excess. The UV-VIS-NIR spectra show the typical B and Q1 bands of the Pc? ligand at ~ 14 kK and ~ 20 kK. For the [Ln(Pc?)2]+ cation a NIR(D) band between 9,14 kK (La) and 11,50 kK (Lu) is characteristic for dimeric cofacial Pc? radicals. Within the row La…Lu, there is a linear relationship of the hypsochromic shift of the strong bands and the LnIII radius. In the case of La? Nd the D band shifts successively with longer time of bromination to ~ 3 kK as a result of increasing electron delocalisation. Characteristic vibrational bands are at ~ 1350/1450 cm?1 (IR) and ~ 560/1120/1170/1600 cm?1 (RR). In the FT-Raman spectra the totally symmetric Ln? N stretching vibration between 141 cm?1 (La) and 172 cm?1 (Lu) is selectively enhanced. As shown by α-[Sm(Pc)2]Br1,45 and α-[Sm(Pc)2](ClO4)0,63 only partially ringoxidized complexes are obtained by the anodic oxidation. Both crystallize in the tetragonal space group P4/nnc. The [Sm(Pc)2] molecular building block contains two nearly planar staggered (~41°) Pc rings packed in columns parallel along [001] leading to the quasi-one-dimensional structure. There is a statistical disorder of the SmIII and the ClO4? resp. Br?/Br3? ions over two incompletely filled crystallographic positions for the cation resp. anion. This results in a partial oxidation of the Pc ligand, which in the picture of localized valence states for α-[Sm(Pc)2](ClO4)0,63 corresponds to [SmPc?Pc2?] · 2[Sm(Pc?)2](ClO4). Accepting the same valence state for [Sm(Pc)2]Br1,45 five positive charges are compensated by two Br? and three Br3?. The spectroscopic differences of the partially and fully oxidized complexes are discussed.  相似文献   

14.
The absolute infrared intensities of the 0?1, 0?2 and 1?2 vibration-rotation bands in the 1Σ+ ground state have been calculated from first principles. The dipole moment function for NO+ was determined in the region of the equilibrium internuclear separation by an accurate multi-configuration self-consistent-field procedure. The dipole matrix elements over vibration states were solved exactly using numerical techniques. The ratio of the calculated integrated absorption coefficients for the fundamental and first overtone (88.8 cm?2 atm?1 and 0.6 cm?2 atm?1, respectively, at 273.16°K) is in reasonable agreement with an estimate based on observation of these bands in NO+ at high altitudes in the upper atmosphere.  相似文献   

15.
A simple and sensitive method for spectrophotometric determination of lanthanum has been developed. At pH 9.6, in presence of 50% ethanol, lanthanum reacts with 1-(-2-pyridylazo)-2-naphthol (PAN) to form a red complex which has two absorption maxima, at 545 and 510 nm. The molar absorptivity at 545 nm is 0.55 × 104 liters · mol?1 cm?1. On the other hand, lanthanum reacts with PAN in pure ethanol to form a red complex at 530 nm, with high molar absorptivity (8 × 104 liters · mol?1 cm?1).  相似文献   

16.
A novel high energetic material, 1‐amino‐1‐methylamino‐2,2‐dinitroethylene (AMFOX‐7), was synthesized through 1,1‐diamino‐2,2‐dinitroethylene (FOX‐7) reacting with methylamine in N‐methyl pyrrolidone (NMP) at 80.0°C, and its structure was determined by single crystal X‐ray diffraction. The crystal is monoclinic, space group P21/m with crystal parameters of a=6.361(3) Å, b=7.462(4) Å, c=6.788(3) Å, β=107.367(9)°, V=307.5(3) Å3, Z=2, µ=0.160 mm?1, F(000)=168, Dc=1.751 g·cm?3, R1=0.0463 and wR2=0.1102. Thermal decomposition of AMFOX‐7 was studied, and the enthalpy, apparent activation energy and pre‐exponential constant of the exothermic decomposition reaction are 303.0 kJ·mol?1, 230.7 kJ·mol?1 and 1021.03 s?1, respectively. The critical temperature of thermal explosion is 245.3°C. AMFOX‐7 has higher thermal stability than FOX‐7.  相似文献   

17.
It was found that 1-substituted quaternary imidazolium compounds show some characteristic infrared (IR) activity. On quarternization of 1-substituted imidazoles strong absorption bands appeared at about 1150 and 1550 cm?1 in the IR spectra of these compounds. The band at 1150 cm?1 was assigned to the position 2 C?H bending mode and the 1550 cm?1 band was attributed to a ring vibration mode of the quaternary imidazolium compounds. The concentration of the quaternary imidazolium units in a polymer can be determined by measuring the intensity of the absorption bands at 1150 or 1550 cm?1 in relation to another suitable absorption band of the spectrum.  相似文献   

18.
[M ? H+]? ions of isoxazole (la), 3-methylisoxazole (1b), 5-methylisoxazole (1c), 5-phenylisoxazole (1d) and benzoylacetonitrile (2a) are generated using NICI/OH? or NICI/NH2? techniques. Their fragmentation pathways are rationalized on the basis of collision-induced dissociation and mass-analysed ion kinetic energy spectra and by deuterium labelling studies. 5-Substituted isoxazoles 1c and 1d, after selective deprotonation at position 3, mainly undergo N ? O bond cleavage to the stable α-cyanoenolate NC ? CH ? CR ? O? (R = Me, Ph) that fragments by loss of R? CN, or R? H, or H2O. The same α-cyanoenolate anion (R = Ph) is obtained from 2a with OH?, or NH2?, confirming the structure assigned to the [M ? H+]? ion of 1d, On the contrary, 1b is deprotonated mainly at position 5 leading, via N? O and C(3)? C(4) bond cleavages, to H? C ≡ C? O ? and CH3CN. Isoxazole (1a) undergoes deprotonation at either position and subsequent fragmentations. Deuterium labelling revealed an extensive exchange between the hydrogen atoms in the ortho position of the phenyl group and the deuterium atom in the α-cyanenolate NC ? CD = CPh ? O?.  相似文献   

19.
The metal ion distribution on the two metal sites of monoclinic Mn1?xCux(HCOO)2 · 2(H,D)2O mixed crystals are studied by infrared and Raman spectroscopic methods. The spectral regions 3 200–3 400 cm?1 (vOH), 2 875–2 990 cm?1 (vCH), 2 330–2 500 cm?1 (vOD of matrix isolated HDO molecules), 1 350–1 400 cm?1 (symmetric CO2 stretching modes), 570–950 cm?1 (H2O librations), and 490 cm?1 (M? O lattice modes) are mostly sensitive to the metal ions present. The frequency shifts of these bands with increasing content of copper show that Cu2+ prefers the M(1) site, coordinated by HCOO? only. The strengths of the hydrogen bonds increase on going from manganese to copper formate, due to the increased synergetic effect of Cu2+. Solubility and X-ray data of the mixed crystals are included. Irrespective of the same crystal structure, two series of mixed crystals are formed: eutonic area at 0.65 ≥ x ≥ 0.5.  相似文献   

20.
《Analytical letters》2012,45(11):2011-2016
Abstract

A new spectrophotometric determination of cobalt with 2-hydroxy-1-naphthaldehyde guanylhydrazone in acid medium is described. The method is developed on the basis of a yellow cobalt (III) complex (molar absorptivity 1.32×10?4 L.mol?1.cm?1 at 416 nm, stoichiometry 2:1). The method was applied to the determination of cobalt in vitamin preparations, steel and high-purity iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号