首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
E. Blasius  T. Ehrhardt 《Talanta》1979,26(8):713-717
Electrophoresis in an inert atmosphere with CDTA as complexing agent in the electrolyte system permits the separation of dissolved Fe(II) and Fe(III) as well as that of the colloidal and undissolved Fe(III) in solutions containing strong complexing agents or micro-organisms. The separated iron species are subsequently determined by spectrophotometry or by atomic-absorption spectroscopy after elution, or by direct photometry, plotting absorbance as a function of distance along the electro-phoretogram. The method is suitable for the determination of the iron in two oxidation states in synthetic nutritive fluids containing bacteria as well as in natural waters.  相似文献   

2.
A procedure for determining the concentrations of dissolved chromium species in natural waters is described. Chromium(III) and chromium(VI), separated by co-precipitation with hydrated iron(III) oxide, and total dissolved chromium are determined separately by conversion to chromium(VI), extraction with APDC into MIBK and determination by a.a.s. The detection limit is 40 ng l?1 Cr. The dissolved chromium not amenable to separation and direct extraction is calculated by difference. In the waters investigated, total concentrations were relatively high (1–5 μg l?1) with Cr(VI) the predominant species in all areas sampled with one exception, where organically bound chromium was the major species.  相似文献   

3.
An electrochemical method based on adsorptive stripping chronopotentiometry (SCP) with a rotating mercury film electrode has been developed for the determination of dissolved iron (III) at subnanomolar concentrations in estuarine and coastal waters. The detection limit was 0.11 nM after adsorption time of 60 s. Compared to the other chronopotentiometric methods available for dissolved iron measurement in natural and estuarine waters, the procedure described here exhibits a 15-fold better sensitivity. Therefore, it allows one to accurately quantify concentrations commonly found in estuarine and coastal waters. Moreover, by using the speciation scheme proposed by Aldrich and van den Berg (Electroanalysis 10 (1998) 369), several forms could be measured, i.e. reactive iron (Fe R) and reactive iron (III) (FeIII R), or estimated, i.e. complexed iron (Fe C) and reactive iron (II) (FeII R). The method described here is reliable, fast, inexpensive and compact. It was applied successfully to the study of the chemical speciation of dissolved iron along the salinity gradient of the Aulne estuary (Brittany-France).  相似文献   

4.
Zhou Y  Zhu G 《Talanta》1997,44(11):2041-2049
Measurement of iron and manganese is very important in evaluating the quality of natural waters. We have constructed an automated Fe(II), total dissolved iron(TDI), Mn(II), and total dissolved manganese(TDM) analysis system for the quality control of underground drinking water by reverse flow injection analysis and chemiluminescence detection(rFIA-CL). The method is based on the measurement of the metal-catalyzed light emission from luminol oxidation by potassium periodate. The typical signal is a narrow peak, in which the height is proportional to light emitted and hence to the concentration of metal ions. The detection limits were 3 x 10(-6)mug ml(-1) for Fe(II) and the linear range extents up to 1.0 x 10(-4) and 5 x 10(-6)mug ml(-1) for Mn(II) cover a linear range to 1.0 x 10(-4)mug ml(-1). This method was used for automated in-situ monitoring of total dissolved iron and total dissolved manganese in underground water during water treatment.  相似文献   

5.
Nigo S  Yoshimura K  Tarutani T 《Talanta》1981,28(9):669-674
A trace method for iron, based on ion-exchanger colorimetry, has been developed. 1,10-Phenanthroline is used as the colour reagent for iron(II) and citrate as the masking reagent for iron(III). Total iron can be determined after reduction of iron(III) to iron(II) with hydroxylamine. It is possible to determine iron at mug/l.-levels in different oxidation states in natural waters.  相似文献   

6.
Summary In a method developed for the determination of phosphorus in aqueous solutions, phosphorus was changed to the phosphate form, coprecipitated with hydrated iron(III) oxide, bound with activated charcoal and measured by EDXRF. The detection limit was 0.89 mg P/g activated charcoal. The method was used to determine the total phosphorus content of a waste water sample from a paper mill. Investigation of two sample destruction methods, dry ashing/HCl digestion and persulphate oxidation, showed the former to be more suitable for our purpose.  相似文献   

7.
The use of a commercially available chelating resin with NTA-type functional groups for concentration of trace metals from seawater is described. Trace metal recoveries from this NTA Superflow chelating resin are pH dependent. At a pH of ≤2 only iron(III) and copper are quantitatively recovered from the resin. Iron(II) cannot be quantitatively recovered from this resin below a pH of 5. However, oxidation of acidified seawater samples (pH 1.7) with H2O2 prior to loading onto the resin has been demonstrated to allow quantitative recovery of total dissolved iron. Deferrioxamine and Rhodoturlic Acid, two commercially available siderophores were used to investigate the effect of strong Fe(III)-binding organic ligands on the ability to retain iron at different pH values. Acidification of seawater samples to pH 1.7 dissociates the iron complexed to these organic ligands, thereby allowing total dissolved iron and copper to be determined. Acidified samples from Monterey Bay were analyzed by a flow injection method coupled to ICP-SFMS detection using the NTA Superflow resin in the pre-concentration step. Results from this study show that when seawater samples are stored acidified (pH 1.7) over time, a portion of iron(III) is reduced to iron(II), thus necessitating the use of H2O2 to reoxidize the Fe(II) to Fe(III) prior to analysis. Total dissolved concentrations of iron and copper can be directly obtained on seawater samples at pH 1.7 with this method, eliminating the need to buffer the sample to a higher pH prior to column loading. This resin has the potential to be used in shipboard or in situ flow injection methods.  相似文献   

8.
A rapid method suitable for the determination of dissolved organic phosphorus (DOP) in soil leachates and runoff waters is presented. The flow injection (FI) manifold contains an in-line PTFE reaction coil wrapped around a low power UV lamp and is based on the spectrophotometric determination of dissolved reactive phosphorus (DRP) and mineralised DOP at 690 nm after reduction of phosphomolybdate to molybdenum blue with tin(II) chloride. The linear range was 0-1.5 mg 1(-1) PO(4)-P, with a detection limit (3 s) of 7 mug 1(-1) and a sample throughput of 40 h(-1). Tolerance to potential matrix interferences in soil pore waters, particularly Al(III), Si(IV), Fe(II) and Fe(III), was achieved using a combination of on-line sample pre-treatment by a strong acid ion exchange column, low photoreactor pH and acid induced control of the kinetics of the molybdenum blue reaction. The results obtained with this manifold were in good agreement with those obtained by a batch spectrophotometric reference method.  相似文献   

9.
Since 1886 arsenic has been known to be present as a trace component in the Wiesbaden thermal waters at concentrations of over 100 microg L(-1). In this study for the first time molecular level speciation of arsenic was measured both in the water (by HG-AAS) and in wellstone scale deposits (by XANES). Most of the arsenic in the anoxic NaCl-type waters is in the reduced arsenite form. Hydrous ferric oxide (HFO) precipitates in the scale deposits scavenge only the minor dissolved arsenate portion which is, however, accumulated up to 3% w/w. Isothermal precipitation experiments at in-situ temperatures showed a difference between the progress of both arsenic and iron oxidation and precipitation. This can be explained in terms of adsorption of the aqueous arsenite and heterogeneous oxidation on the HFO surface, but subsequently rapid release of the arsenate thereby formed back into the aqueous phase at enhanced temperature and increased pH. Such relatively rapid pseudo-homogeneous arsenite oxidation is too slow to efficiently retard the As(III) load already on the wellhead, but fast enough to prevent arsenic seepage into ground water aquifers.  相似文献   

10.
A flow-through fluorescent sensor for the consecutive determination of Fe(III) and total iron is described. The reactive phase of the proposed sensor, which has a high affinity for complexed Fe(III), consists of pyoverdin immobilized on controlled pore glass (CPG) by covalent bonding. This pigment selectively reacts with Fe(III) decreasing its fluorescence emission. Total inorganic iron is determined as Fe(III) after on-line oxidation in a mini-column containing persulphate immobilized on an ion exchange resin. The developed method allows the determination of Fe(III) in the 3-200 (g l(-1) range. The relative standard deviations of 10 determinations of 60 (g l(-1) of Fe(III) and 20 (g l(-1) of Fe(III)+Fe(II) are 3 and 5%, respectively. The sensor has been satisfactorily applied to speciate iron in synthetic, tap and well waters and wines. There were no significant differences for total inorganic iron determination between this new method and the atomic absorption spectroscopy reference method at the 95% confidence level. The sensor allows the concentration of Fe(II) to be calculated as the difference between total inorganic iron and Fe(III). The lifetime of the sensor is at least 3 months in continuous use or the equivalent of 1000 determinations.  相似文献   

11.
The diffusive gradients in thin films (DGT) technique, utilizing an iron-hydroxide adsorbent, has been investigated for the in situ accumulation of total dissolved inorganic As in natural waters. Diffusion coefficients of the inorganic As(V) and As(III) species in the polyacrylamide gel were measured using a diffusion cell and DGT devices and a variety of factors that may affect the adsorption of the As species to the iron-hydroxide adsorbent, or the diffusion of the individual As species, were investigated. Under conditions commonly encountered in environmental samples, solution pH and the presence of anions, cations, fulvic acid, Fe(III)-fulvic acid complexes and colloidal iron-hydroxide were demonstrated not to affect uptake of dissolved As. To evaluate DGT as a method for accumulation and pre-concentration of total dissolved inorganic As in natural waters, DGT was applied to two well waters and a river water that was spiked with As. For each sample, the concentration obtained with use of DGT followed by measurement by hydride generation atomic absorption spectrometry with a Pd modifier (HG-AAS) was compared with the concentration of As measured directly by HG-AAS. The results confirmed that DGT is a reliable method for pre-concentration of total dissolved As.  相似文献   

12.
Hexacyanoferrate(III) was used as a mediator in the determination of total iron, as iron(II)-1,10-phenanthroline, at a screen-printed carbon sensor device. Pre-reduction of iron(III) at −0.2 V versus Ag/AgCl (1 M KCl) in the presence of hexacyanoferrate(II) and 1,10-phenanthroline (pH 3.5-4.5), to iron(II)-1,10-phenanthroline, was complete at the unmodified carbon electrode surface. Total iron was then determined voltammetrically by oxidation of the iron(II)-1,10-phenanthroline at +0.82 V, with a detection limit of 10 μg l−1.In potable waters, iron is present in hydrolysed form, and it was found necessary to change the pH to 2.5-2.7 in order to reduce the iron(III) within 30 s. A voltammetric response was not found at lower pH values owing to the non-formation of the iron(II)-1,10-phenanthroline complex below pH 2.5.Attempts to incorporate all the relevant reagents (1,10-phenanthroline, potassium hexacyanoferrate(III), potassium hydrogen sulphate, sodium acetate, and potassium chloride) into a modifying coated PVA film were partially successful. The coated electrode behaved very satisfactorily with freshly-prepared iron(II) and iron(III) solutions but with hydrolysed iron, the iron(III) signal was only 85% that of iron(II).  相似文献   

13.
A new method is proposed for the determination of dissolved oxygen in water. The iron(III) formed from FES at pH 7.5 is titrated with EDTA solution in presence of salicylic acid indicator after adjustment of the pH to about 2.4 The method is slightly less precise than the Winkler method for pure waters but more accurate for polluted waters; it is simple and convenient for field use.  相似文献   

14.
《Analytical letters》2012,45(2):319-330
Abstract

A rapid procedure has been developed for the analysis of orthophosphate, sulfate and chloride in riverine sediment interstitial water samples which have dissolved iron concentrations ranging from 0.5–2 mmol L?1. Interferences caused by the precipitation of iron hydroxides resulting from air oxidation of ferrous iron in the anoxic samples and from the alkaline working pH range (9.0 – 10.5) of the Dionex1 ion chromatographic system were eliminated by complexing the iron with cyanide. Orthophosphate concentration values are compared with dissolved reactive phosphate concentration data for the same samples. Orthophosphate concentrations rather than dissolved reactive phosphate concentrations are preferred for phosphate mineral solubility calculations and for phosphorus nutrient measurements.  相似文献   

15.
Iron is a limiting nutrient for primary production in marine systems, and photochemical processes play a significant role in the upper ocean biogeochemical cycling of this key element. In recent years, progress has been made toward understanding the role of biologically produced organic ligands in controlling the speciation and photochemical redox cycling of iron in ocean surface waters. Most (>99%) of the dissolved iron in seawater is now known to be associated with strong organic ligands. New data concerning the structure and photochemical reactivity of strong Fe(III) binding ligands (siderophores) produced by pelagic marine bacteria suggest that direct photolysis via ligand-to-metal charge transfer reactions may be an important mechanism for the production of reduced, biologically available iron (Fe[II]) in surface waters. Questions remain, however, about the importance of these processes relative to secondary photochemical reactions with photochemically produced radical species, such as superoxide (O2-). The mechanism of superoxide-mediated reduction of Fe(III) in the presence of strong Fe(III) organic ligands is also open to debate. This review highlights recent findings, including both model ligand studies and experimentallobservational studies of the natural seawater ligand pool.  相似文献   

16.
An adsorptive stripping chronopotentiometric (SCP) method has been developed for quantification of dissolved iron in estuarine and coastal waters. After UV-digestion of filtered samples the Fe(III) ions in non-deoxygenated samples were complexed with solochrom violet RS (SVRS). The complexes were then accumulated by adsorption on the surface of a mercury-film electrode. The stripping step was performed by applying a constant current of −17 μA. Sensitivity and detection limit were 15 ms nmol−1 L (270 ms μg−1 L) and 1.5 nmol L−1 (84 ng L−1), respectively, for 60-s electrolysis time. Compared with the only other chronopotentiometric method available for measurement of iron in natural waters, our procedure is fifty times more sensitive in a quarter of the electrolysis time. It therefore enables detection of the concentrations currently found in estuarine and coastal waters. The method was successfully used to study the behaviour and seasonal variations of dissolved iron in the Penzé estuary, NW France.  相似文献   

17.
Lunvongsa S  Oshima M  Motomizu S 《Talanta》2006,68(3):969-973
A flow injection spectrophotometric method has been developed for the determination of dissolved and total amounts of iron in tap and natural water samples. The method for the determination of iron employs a sample acidification step in order to decompose iron hydroxide and iron-complexes into free iron, Fe(III) and Fe(II). The amounts of free iron were detected using a catalytic action of Fe(III) and Fe(II) on the oxidation of N,N-dimethyl-p-phenylenediamine in the presence of hydrogen peroxide. Increase in absorbance of oxidized product was detected spectrophotometrically at 514 nm. The proposed method allows 0.02 and 0.06 μg l−1 of LOD and LOQ, respectively, with relative standard deviation (RSD) below 2%. The accuracy and the precision of the method were evaluated by the analysis of the standard reference material, river water. The developed method was successfully applied to real water samples.  相似文献   

18.
Osaki S  Osaki T  Hirashima N  Takashima Y 《Talanta》1983,30(7):523-526
The chromium(VI) contents of two water samples, a river water and a sea-water, were determined by means of solvent extraction with APDC (ammonium pyrrolidinedithiocarbamate) into chloroform and by co-precipitation with iron(III) hydroxide. The analytical results depended on the separation method used, possibly because of differences in the behaviour of the chemical species of chromium in natural waters. Various chromium species, including simple inorganic ions, organic complexes, Cr(III) adsorbed on inorganic colloids and Cr(III) combined with organic polymers, were prepared, and their analytical characteristics were investigated.  相似文献   

19.
The behavior of the Fe(II)/(III) redox system at a Au microelectrode ensemble (Au‐MEE) based on a solid composite by means of direct and cyclic voltammetric analysis (VA) is reported. With a simple electrode activation and sample preparation, the influence of dissolved organic substances was eliminated, providing highly sensitive results. The analytical signal was based on the maximum cathodic current (I) of the first derivative (dI/dE), and iron determination within the 0.002–0.04 mg L?1 range was studied. A sensitive LOD (3σ) value of 0.7 µg L?1 for total iron concentration was calculated; total iron determination in different waters was shown.  相似文献   

20.
Studies on nitrogen in natural waters have generally focussed on dissolved inorganic nitrogen (DIN), primarily because of relative ease of analysis and the important influence of DIN on water quality. Advances in analytical techniques now permit the systematic study of dissolved organic nitrogen (DON), and this work has shown that DON is quantitatively significant in many waters. This article describes the sampling and analytical protocols required for rapid, precise and reliable determinations of DON, involving high-temperature catalytic oxidation (HTCO), coupled to chemiluminescence detection. This approach simultaneously determines dissolved organic carbon (DOC) and total dissolved nitrogen (TDN), and DON is derived by subtraction of DIN measured by colorimetry. The DON determination is simple to perform, exhibits excellent precision (<1% for C and 1.5% for N) and is applicable to a wide range of natural waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号